

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MĀTAURANGA O AOTEAROA

Level 2, 2004

Science

Describe aspects of New Zealand's endemic life (90314)

Describe naturally occurring organic mixtures and the production of derived consumer products (90315)

Describe New Zealand's geological history and processes, and the nature and life cycle of stars (90316)

Use physics to describe the operation of technological devices, and to solve problems (90317)

National Statistics

Assessment Report

Assessment Schedule

Science, Level 2, 2004

General Comments

There was a significant improvement in performance by candidates in all areas this year. Biology and physics were well done, and there was a pleasing improvement in chemistry and geology / astronomy.

Most candidates had a better understanding of the content of the exams.

More candidates this year were better able to link ideas and hence a larger number gained Achievement with Merit and Achievement with Excellence. For this, it is necessary to read the questions for meaning, learn the basic terms as outlined in the explanatory notes, and learn to explain links between aspects of the question.

It is important that candidates attempt all questions in the papers.

Many candidates were able to reach the Excellence level in one question, but failed to show sufficient breadth of information to do so for the whole paper.

Science: Describe aspects of New Zealand's endemic life (90314)

National Statistics

Number of	Percentage			
Results	Not Achieved	Achieved	Merit	Excellence
1,478	39.8%	49.6%	7.8%	2.8%

Assessment Report

The paper was generally well done. Candidates who gained Achievement were able to describe evolution and the processes involved. They had read the explanatory notes and this was necessary to answer the first half of the paper. Conservation was generally well done.

Candidates who gained Achievement with Merit or Achievement with Excellence, were able to link the processes of evolution to New Zealand examples. Geological and biological factors were also explained. Excellence candidates were also able to link the processes of conservation to the effectiveness of the methods chosen.

Candidates assessed as Not Achieved did not understand the key terms as contained in the explanatory notes and in particular: bottlenecks, geological factors and the relationship between geological factors and evolution.

It is important that candidates carefully read the questions for meaning.

Science: Describe aspects of New Zealand's endemic life (90314)

Question	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
Criterion 1 (Q1, Q2)	Describe the evolution of New Zealand plants and animals including the factors and processes involved.	Make reasoned links between the factors and the processes involved in the evolution of New Zealand plants and animals.	Make valid generalisations by applying the linked factors and processes to a wider group of New Zealand plants and animals.
	Holistic judgement A student can describe the evolution of the hebes OR the kea.	Holistic judgement A student can explain the evolution of the hebes OR the kea.	Holistic judgement A student can discuss the evolution of the hebes OR the kea.
1(a)	Change in size of leaves OR leaves closer to stem in alpine OR smaller flowers OR smaller plants OR size only.		
1(b)	Killed off some populations OR left few surviving individuals.	Killed off some populations AND left few surviving individuals.	
1(c)	Small leaves OR small flowers OR small plant size (any adaptation to cold).	Small leaves OR small flowers OR small plant size AND link to reduce water loss or heat loss or adaptation to alpine environment.	
1(d)	Formed lots of different hebe species.	Several different populations evolved with different allele frequencies.	Several different populations evolved with different allele frequencies AND over time lead to new species.
2(a)	Any valid geological factors leading to separation eg mountain building, ice age, climate change. (2 required)		
2(b)	New environments only.	Created new environments AND separated isolated populations from each other OR adaptation to cold.	
2(c)	Forest v mountain environment OR different breeding seasons OR different mating rituals OR different physical responses OR different hormonal responses OR can't form hybrids.	Acheivement with 1 method explained eg if different breeding seasons, won't be able to mate.	Achievement with 2 methods explained and linked to separation of the species.

Question	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
Criterion 2 (Q3, Q4)	Describe the key conditions necessary for the survival of a New Zealand endemic plant or animal.	Explain key conditions necessary for the survival of a New Zealand endemic plant or animal AND discuss implications for survival.	Explain, in detail, a range of conditions necessary for the survival of a New Zealand endemic plant or animal, discuss implications AND evaluate the chances for survival.
	Holistic judgement A student can describe the key conditions necessary for the survival of the Mt Cook lily OR how animals are conserved.	Holistic judgement A student can explain the key conditions necessary for the survival of AND discuss the implications of the conservation of the Mt Cook lily AND how a named animal is conserved.	Holistic judgement A student can discuss the key conditions necessary for the survival of AND discuss the implications of AND evaluate the success of the conservation of the Mount Cook lily AND how named animals are conserved.
3(a)	Any valid biological reason eg plants break due to trampling OR plants may be eaten OR introduce diseases.		
3(b)(i)	Reduce animals OR protect areas with fences OR restrict stock and humans in risk areas.		
3(b)(ii)		Reduce animals OR protect areas with fences OR restrict stock and humans in risk areas AND allow plant to grow and reproduce successfully.	
3(c)	Survival under threat OR special areas needed OR can only survive with human intervention OR may not be successful OR small gene pool.	Predator elimination OR special areas needed OR small gene pool AND can only survive with human intervention OR may not be successful.	Survival under threat AND special areas needed AND small gene pool AND can only survive with human intervention AND may not be successful with reasons eg harsh winters.
4	Named NZ endemic animal given AND 1 of special areas, predator elimination, selective breeding AND effectiveness of one method required.	Named NZ endemic animal given AND 2 of special areas, predator elimination, selective breeding, education AND effectiveness of two methods required.	Named NZ endemic animal given AND 3 of special areas, predator elimination, selective breeding, education, AND effectiveness of all methods required.

Criterion 1 (Questions 1 and 2)

Achievement:

Total of 4 opportunities answered at Achievement (or higher) from questions 1 and 2. $4\times A1$

Achievement with Merit:

Total of 4 opportunities answered with 3 at Merit level (or higher) **and** 1 at Achievement level $3 \times M1 + 1 \times A1$

Achievement with Excellence:

Total of 4 opportunities answered with 1 at Excellence level **and** 2 at Merit level **and** 1 at Achievement level $1 \times E1 + 2 \times M1 + 1 \times A1$

Criterion 2 (Questions 3 and 4)

Achievement:

Total of 2 opportunities answered at Achievement (or higher) from questions 3 and 4. $2 \times A2$

Achievement with Merit:

Total of 2 opportunities answered with 2 at Merit level (or higher) $2 \times M2$

Achievement with Excellence:

Total of 2 opportunities answered with 1 at Excellence level **and** 1 at Merit level $1 \times E2 + 1 \times M2$

Science: Describe naturally occurring organic mixtures and the production of derived consumer products (90315)

National Statistics

Number of	Percentage				
Results	Not Achieved	Achieved	Merit	Excellence	
1,056	65.9%	29.5%	4.5%	0.0%	

Assessment Report

The paper was generally not well done, although it showed a marked improvement over 2003.

Candidates who gained Achievement were able to describe compounds and the key steps in the production of consumer products, and were able use the key trigger words, "name or structure".

Candidates who gained Achievement with Merit were those who had a good knowledge of the explanatory notes, and used terminology appropriately and correctly. No candidate gained Achievement with Excellence, because of the complex linking required by the standard. We expect that the wording of the new standard will address this issue.

Candidates assessed as Not Achieved, could not name or draw simple organic compounds, though these are prescribed in the explanatory notes. They had little or no knowledge of derived consumer products such as petroleum, natural gas or plant extracts (EN3). It is important that candidates read questions carefully for meaning.

Science: Describe naturally occurring organic mixtures and the production of derived consumer products (90315)

Question	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
1(a)(i)	H H H_C_COH H H		
1(a)(ii)	Octane		
1(iii)	НННН H-C-C-C-C=C ННН Н		
	any straight chained isomer		
1(iv)	Butanol		
1(v)	ННН H-C-C-C-C-OH НННО		
	(3 required) A1		
1(b)	Heptane OR H H H H H H H H-C-C-C-C-C-C-C-H H H H H H H H A1		
2(a)	Crude oil is a complex mixture/ straight out of the ground but refined oil is a simple mixture/has been processed (not refined).		
2(b)	Different oils contain different mixtures OR have different unique properties/used for different purposes.	Different oils contain different mixtures AND have different unique properties. M1	
2(c)	Stable OR liquid OR easy to transport and store OR high energy OR easy to vaporise OR clean burning OR easily combustable.	Stable OR liquid AND easy to transport and store AND high energy OR easy to vaporise. (3 required)	Stable AND liquid AND easy to transport and store AND high energy AND easy to vaporise. (required or inferred) E1
	AI	141 1	

Question	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
3(a)	1 carbon atom only. A1		
3(b)	1, +2 OR 1, +2 one balanced A2	1, +2 AND 1, + 2 both balanced M2	
3(c)	Sewage digested by bacteria.	Sewage digested by bacteria AND methane a waste product. M2	
4(a)	yeast \rightarrow alcohol + CO ₂ A2		
4(b)	Solvent, disinfectant or any other reasonable use. A2		
4(c)	Yeast fermentation.	Yeast digests sugars for energy during fermentation releasing alcohol as waste product. M2	
4(d)	Wine left for longer to ferment OR different yeast used OR starting plant material used has different level of sugar present OR beer simple fermentation OR wine complex two-stage fermentation.	Refers to both Beer and Wine. M2	Refers to both Beer and Wine and 2 points for each. E2
5(a)	Vaporises all hydrocarbons.	Vaporises all hydrocarbons AND ensures separation of all the fractions. M2	
5(b)(i) (ii) (iii) (iv) (v)	Methane Petrol Av-gas Oil Tar A2		
5(c)	Breaks long chains.	Breaks long chained hydrocarbons into smaller (alkanes) chains of which one is petrol.	
5(d)	Ethene A2	H ₂ -C=C-H ₂ M2	
5(e)	Polythene / Polyethene A2	•-C-C-C-C-C-C-C-• (all the H's need to be in here) M2	
5(f)	High temperatures OR high pressure OR catalysts.	High temperatures AND high pressure OR catalysts AND break bonds. M2	High temperatures AND high pressure AND catalysts (2 conditions) cause bonds to break and reform as smaller, more stable units. E2

Criterion 1

Achievement:

Total of 3 opportunities answered at Achievement (or higher)

 $3 \times A1$

Achievement with Merit:

Total of 3 opportunities answered with 1 at Merit level (or higher) and 2 at Achievement level $1 \times M1 + 2 \times A1$

Achievement with Excellence:

Total of 3 opportunities answered with 1 at Excellence level **and** 1 at Merit level **and** 1 at Achievement level $1 \times E1 + 1 \times M1 + 1 \times A1$

Criterion 2

Achievement:

Total of 6 opportunities answered at Achievement (or higher) $6 \times A2$

Achievement with Merit:

Total of 6 opportunities answered with 3 at Merit level (or higher) and 3 at Achievement level

 $3 \times M2 + 3 \times A2$

Achievement with Excellence:

Total of 6 opportunities answered with 1 at Excellence level **and** 2 at Merit level **and** 3 at Achievement level $1 \times E2 + 2 \times M2 + 3 \times A2$

Science: Describe New Zealand's geological history and processes, and the nature and life cycle of stars (90316)

National Statistics

Number of	Percentage				
Results	Not Achieved	Achieved	Merit	Excellence	
1,067	54.7%	34.4%	7.6%	3.3%	

Assessment Report

The paper was an improvement over last year with many more students gaining Achievement with Merit and Achievement with Excellence.

Candidates who gained Achievement were able to able to describe New Zealand's geological history and describe how stars are classified. They needed to answer both sections, and knowledge of the H-R diagram was essential.

Candidates who gained Achievement with Merit or Achievement with Excellence were able to link the various orogenic phases to New Zealand's geological history, link the last ice age to the Kaikoura Orogeny, and were able to work out what happened to Achernar to lose mass to become a white dwarf.

Some of the candidates assessed as Not Achieved did well in one of the sections, geology or astronomy, but the standard required **both** aspects to be demonstrated. For 2005 these topics become separate papers. Candidates need to read the explanatory notes attached to the standard. Knowledge of basic terms such as orogeny, was lacking.

Science: Describe New Zealand's geological history and the processes, and the nature and life cycle of stars (90316)

Q	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
Part A Criterion 1 (Q1 & Q2)			
1(a)	 Indo-Australian AND W-E motion OR Pacific AND E-W motion any order 1 plate correct OR both plates correctly identified. 		
1(b)	Tuhua was NZ first orogney.	NZ built from deposition onto Eastern coast of Gondwanaland and hence west oldest to east youngest.	
1(c)(i)	Fan formed in deep water with sediments off Gondwanaland OR erosion.		
1(c)(ii)	Volcano OR island (one required).		
1(d)	Inference to subduction zone OR trench necessary for Rangitata sediments OR Mountain Orogney OR weathering / erosion.	Subduction zone AND sediments built up in the trench OR build up into mountains.	Subduction zone AND off E coast Gondwanaland AND sediments carried into trench and built up AND built up into mountains.
1(e)	Mountain building lifts the Rangitata rocks.	Mountain building lifts Rangitata rocks AND rate of uplift greatest near Alpine fault OR Southern Alps.	
2(a)	Moraine OR till OR u-shaped valleys. (valid glacial feature).		
2(b)	Higher erosive ability of ice OR colder temperatures freeze thaw action.	Higher erosive ability of ice AND colder temperatures freeze thaw action.	
2(c)	Lifted mountains up to higher altitudes.	Lifted mountains up to higher altitudes AND exposed rocks to erosive ability of ice rather than water.	Lifted mountains up to higher altitudes AND exposed rocks to erosive ability of ice AND acted as a barrier to the westerly wind systems OR increasing precipitation.

Q	Evideno to A	ce contributi chievement	ing	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
Part B	Describe how stars are classified and describe their life cycles.		Link star types and their cha- racteristics to their life cycles.	Explain links between the nature and life cycles of stars.	
Criterion 2 (Q3 and Q4)	Holistic judge The student ha that there are stars which are several differen	ement stater as an unders different type e described b nt characteris	nent tanding es of by stics.	Holistic judgement statement The student can connect two stages or characteristics of a star's life. M2	Holistic judgement statement The student understands the causes and/or the consequences of a star's nature. E2
3	M Class OR dv OR ≈ 0.0001 b 1 required	warf star OR prightness of	< 3000° Sun.		
4	Characteris- tics Mass (Suns) Size (Suns) Colour Surface Temperature Spectral Type 1 surface temper spectral type co	Sun × 1 × 1 Yellowish- white 5400 ±1000 G rrature corrrect rrect.	Acher- nar × 6 × 12 Blue 20 000 ±1000 B t AND 1		
5	Blue or white hot is hotter than red hot AND blue Achernar is hotter than yellow-white Sun.				
6	Stars are formed from big clouds of gas (or hydrogen) that squeeze together by gravity.		Big clouds of gas/hydrogen that squeeze together by gravity AND centre gets hot.	Big clouds of gas/hydrogen squeeze together by gravity AND centre gets hot AND finally starts to 'burn'/fuse AND then it is a star.	
7	Greater mass OR higher temperatures AND shorter lifetimes.		Greater mass AND higher temperatures AND shorter lifetimes.	Larger mass then more compact (denser) star's core because of stronger gravity AND star will be hotter (higher temperature) AND 'burn'/fuse faster (use up fuel quicker). (Our Sun will live longer than Achernar.)	
8	Star Types Main Sequence Red Giant Super Giant Supernova White Dwarf (at least 3 correct	Fuels Hydrogen Helium Carbon & Iron None ct)	Oxygen		
9	Achernar's hel outer layers pu planetary nebu	ium is used u ıff off OR forr ıla.	up AND ms a	Achernar's helium is used up AND its core shrinks to become a white dwarf AND the heat produced is only enough to puff off outer layers.	

Criterion 1 (Part A)

Achievement:

Total of 4 opportunities answered at Achievement (or higher) $4 \times A1$

Achievement with Merit:

Total of 4 opportunities answered with 2 at Merit level (or higher) and 2 at Achievement level $2 \times M1 + 2 \times A1$

Achievement with Excellence:

Total of 4 opportunities answered with 1 at Excellence level **and** 1 at Merit level **and** 2 at Achievement level $1 \times E1 + 1 \times M1 + 2 \times A1$

Criterion 2 (Part B)

Achievement:

Total of 4 opportunities answered at Achievement (or higher)

 $4 \times A2$

Achievement with Merit:

Total of 4 opportunities answered with 2 at Merit level (or higher) and 2 at Achievement level

 $2 \times M2 + 2 \times A2$

Achievement with Excellence:

Total of 4 opportunities answered with 1 at Excellence level **and** 1 at Merit level **and** 2 at Achievement level $1 \times E2 + 1 \times M2 + 2 \times A2$

Science: Use physics to describe the operation of technological devices, and to solve problems (90317)

National Statistics

Number of	Percentage				
Results	Not Achieved	Achieved	Merit	Excellence	
1,833	32.7%	46.9%	10.1%	10.3%	

Assessment Report

The paper was generally well done and had a larger cohort than the other standards. The standard showed an increase in the Achievement rate from 2003. This standard had the highest percentage of Merit and Excellence grades, which is possibly due to physics students taking this standard.

Candidates who gained Achievement were able to identify physics principles / concepts in the operation of technological devices, and were able to solve physics problems. Ray diagrams were well-drawn.

Candidates who gained Achievement with Merit or Achievement with Excellence were able to give correct units to numerical answers, and their answers showed explanations or analysis of physics concepts.

Candidates assessed as Not Achieved, confused the relationship between kinetic and gravitational potential energy. They had difficulty solving formulae, especially substituting data into formulae. These candidates often did not give the units with numerical answers, and ray diagrams were poorly drawn. Candidates need to be aware of the requirements included in the explanatory notes of the standard.

Science: Use physics to describe the operation of technological devices, and to solve problems (90317)

PART A - The Telescope1 $focal ratio = \frac{f}{a}$ $\Rightarrow f = a \times focal ratio$ $\Rightarrow f = a \times focal ratio$ $\Rightarrow = 0.10 \times 15$ $\Rightarrow = 1.5 \text{ m}$ A22(a)1.5 m/focal point OR2(b)	nce
1 focal ratio = $\frac{f}{a}$ $\Rightarrow f = a \times focal ratio$ $\Rightarrow = 0.10 \times 15$ $\Rightarrow = 1.5 \text{ m}$ 2(a) 1.5 m/focal point OR 2(b) \land a	
2(a) 1.5 m/focal point OR BOTH required	
2(b)	
A1 M1	
3(a) Correct formula and substitution only. $d_{o} = 20 \text{ m}$ $f = 1.5 \text{ m}$ $d_{i} = ?$ $\frac{1}{d_{o}} + \frac{1}{d_{i}} = \frac{1}{f}$ $\frac{1}{d_{o}} - \frac{1}{d_{i}} = \frac{1}{f}$ $\frac{1}{d_{o}} - \frac{1}{d_{i}} = \frac{1}{f}$ $\frac{1}{d_{i}} = \frac{1}{1.5} + \frac{1}{20}$ $= 0.67 - 0.05$ $= 0.62$ $d_{i} = 1.62 \text{ m}$ Correct unit and sensible rounding OR $S_{o} = 20 \text{ or } 18.5 \text{ m} \text{ (accept either)}$ $f = 1.5 \text{ m}$ $S_{i} = ?$ $S_{i} S_{o} = f^{2}$ $S_{i} = \frac{f^{2}}{S_{o}}$ $= \frac{1.5^{2}}{20} \text{ or } = \frac{1.5^{2}}{18.5}$ $= 0.11 \text{ m} = 0.12 \text{ m}$ $\approx 0.1 \text{ m} \approx 0.1 \text{ m}$ $\Rightarrow \text{ image is } 1.5 + 0.1 \text{ m}$ $= 1.6 \text{ m from objective lens}$	

Question	Achievement	Achievement with Merit	Achievement with Excellence
3(b)(i) 3(b)(ii)		Figure 3 AND Eyepiece pulled further out but no reason why OR Figure 2 (due to incorrect answer of 0.62 m in 3(a)) and answer is justified. M1	Figure 3 AND Eyepiece pulled further out AND telescope focused on the 20 m distant object because the image is now 1.6 m from the objective lens instead of 1.5 m for the very distant object (or is now 0.1 m from the focal point).
4	$magnification = \frac{f_{obj}}{f_{eye}}$ $= \frac{1500}{15}$ $= 100$ A2		
5	Real, inverted, diminished. 2/3 correct A1		
6	Identify: Light rays need to be reflected through 90°. OR a prism/mirror used to do this. A1	Explain: Light rays need to be reflected through 90° AND using mirror/prism. M1	Light rays need to be reflected through 90° (just before they reach the eyepiece) AND using mirror/prism) AND device (called a 'diagonal' but name not required) inserted where the eyepiece normally goes and the eyepiece inserted into it. E1
6		Diagram correct as per Excellence diagram but light rays are not converging.	Telescope tube
		M2	Diagram shows light rays are converging E2

Question	Achievement	Achievement with Merit	Achievement with Excellence	
PART B – The Ladder				
7	Correct formula OR substitution.	Work = Fd = 700 × 4.0 = 2800 J = 3000 J or Nm ⁻¹ Correct unit.		
8	Weight × vertical distance/Work done OR increase in gravitational potential energy OR relationship between the two is correctly described.	Weight × vertical distance/Work done AND Is equal to increase in gravitational potential energy. M1		
9	Converted to kinetic energy.	Kinetic energy AND other forms of energy (don't need to be specified) eg sound/heat M1		
PART C – The Lift				
10(a)	Correct formula chosen only.	$\Delta E_{\rm p} = mgh$ = 1000 × 10 × 120 = 1 200 000 J / 1200kJ Correct unit.		
10(b)	(b) Either correct formula OR substitution chosen. A2	Correct time calculation. t = 30 s OR Power calculation correct with incorrect time (not 4) Correct unit. M2	$P = \frac{E}{t}$ = $\frac{1200\ 000}{30}$ = 40 000 W = 40 kW Correct unit. W or kW ok. E2	

Question	Achievement	Achievement with Merit	Achievement with Excellence
11(a)	Aber of the straight AND from origin to correct position (small discrepancies allowed). OR correct trend shown.		
11(b)	Balance the lift. Can be inferred. OR Only a small amount of energy to drive the lift up or down. OR The lift's increasing potential energy comes from the counterweight's decreasing potential energy. (And vice versa; like a seesaw.) OR Provides a safety feature to the lift's travel. A1	Balance the lift. Can be inferred. AND Only a small amount of energy to drive the lift up or down. OR The lift's increasing potential energy comes from the counterweight's decreasing potential energy. (And vice versa; like a seesaw.) M1	Balance the lift. AND Only a small amount of energy to drive the lift up or down. AND The lift's increasing potential energy comes from the counterweight's decreasing potential energy. (And vice versa; like a seesaw.) E1

Criterion 1 Achievement: Total of 3 opportunities answered at Achievement (or higher) $3 \times A1$

Achievement with Merit:

Total of 3 opportunities answered with 3 at Merit level (or higher).

 $3 \times M1$

Achievement with Excellence:

Total of 3 opportunities answered with 1 at Excellence level and 2 at Merit level.

 $1 \times E1 + 2 \times M1$

Criterion 2

Achievement:

Total of 4 opportunities answered at Achievement (or higher)

 $4 \times A2$

Achievement with Merit:

Total of 4 opportunities answered with 3 at Merit level (or higher) and 1 at Achievement level $3 \times M2 + 1 \times A2$

Achievement with Excellence:

Total of 4 opportunities answered with 1 at Excellence level and 3 at Merit level

 $1 \times E2 + 3 \times M2$

Note:

For Achievement, at least 2A must come from Light (Part A) and 2A from Energy (Parts B & C). For Merit, at least 1M must come from Light and 1M from Energy.