
BCS Professional Examination 2001
Professional Graduate Diploma

April 2001

Examiners’ Report

System Design Methods

Question 1

(a) There are a number of general software process models which all incorporate
the four fundamental activities of software specification, development,
validation and evolution. Explain the purpose of each of these four activities.

(4 marks)

(b) The waterfall model and the spiral model are two general software process
models. With the aid of diagrams, provide a detailed explanation of each of
these process models. For each process model clearly indicate how the
specification, development, validation and evolution activities are
incorporated.

(14 marks)

(c) A distinctive feature of the spiral model is its explicit consideration of risk.
Explain what is meant by the term “risk” in this context and identify three risks
associated with a real-world software development project that you are familiar
with. Also indicate strategies that could be employed to reduce each identified
risk.

(7 marks)

Answer Pointers

Expect answers to cover following key points:

a)
• Specification – define functionality of software and the constraints on its operation
• Development – produce the software to meet the specification
• Validation – establish whether or not the software does what the customer wants
• Evolution – software evolves to meet changing customer requirements, and also

correct errors etc…
b)

Waterfall points should include:

• Phases include requirements analysis and specification, system and software
design, Implementation and unit testing, Integration and system testing, operation
and maintenance

• Inflexible partitioning into distinct phases since they overlap in reality

• Diagram of all phases with forward cascade and reverse feedback from any stage to
all previous stages

• Not linear – several iterations are involved
• Frequent iterations make it difficult to define clear management checkpoints
• To help stages are often frozen (prematurely)
• Can lead to systems not meeting requirements (since incorrect requirements model

frozen early)
• Specification, Development, Validation and Evolution relate directly to phases of

model in sequence (design and implementation together encompass “Development”)

Spiral model points should include:

• Recognises that risk forms basis of generic software process model
• Diagram: Graphical model spiralling out from Centre
• Each loop in the spiral represents a phase of the software process as defined by

management
• No fixed phases but examples could be:
• Inner loop – feasibility study
• Next loop out – requirements specification
• Next loop out – system design
• Management decide how to structure a project into phases
• Often organisation will have a generic phase model, with extra phases for specific

projects, of to account for specific problems identified
• Each loop split into 4 sectors: objective setting, risk assessment and reduction,

development and validation, planning (expect sectors on diagram)
• Spiral model encompasses other process models (as sub models), hence may

include prototyping, conventional WF development and formal transformations in
different cycles.

• Specification, Development, Validation and Evolution could relate to different spirals
(as indicated above), however may include all within one spiral (if it represents an
embedded sub-process model)

c)
• A risk in this context is something that can go wrong and is a consequence of

inadequate information.
• Any 3 risks identified, with suitable risk resolution strategy for each. Must be related

to a tangible project for credit.

Examiner's Guidance Notes:
For part (a), candidates often made a poor distinction between specification and
development. Validation was generally well understood. Many candidates did not
demonstrate a clear understanding of evolution.

For part (b), many candidates did not produce clear diagrams. Most produced a
reasonable explanation of the waterfall model but many of the spiral models were poorly
explained. Many candidates provided long explanations but neglected to clearly indicate
how the specification, development, validation and evolution activities were incorporated
into each model.
For part (c), many candidates struggled to identify true risks, and associated resolution
strategies, indicating a lack of understanding of this concept. Some answers lacked
relationship to a real-world project.

Question 2

In literature as well as in industrial practice, a distinction is normally made
between the two design paradigms: real-time systems design and object-oriented
systems design.

(a) Referring these two design paradigms, discuss the key notions (such as
Tasks, Processes and Objects) and their functions. Compare the ways in
which concurrency is handled in these two design paradigms.

(12 marks)

(b) Suppose you are a consultant. Your client company intends to develop a
temperature control system for multiple warehouses, and therefore needs to
decide a suitable method for the system design and implementation. Relating
to your discussion in part a), give advice to the company and provide
justification for your advice.

(13 marks)

Answer Pointers

a)
Expect to mention some fundamental concepts and principles associated with high-
quality software, to show understanding of the notion of quality of software. In addition,
the candidate should be able to discuss some of the problems for the designer. These
are examples of issues that the real-time design addresses:
• Representation of interruption and context switching
• Concurrency as manifested by multitasking and multiprocessing
• Intertask communication and synchronisation
• Representation of timing constraints
• Asynchronous processing

The candidate should also show understanding of object-oriented design by being able
to discuss the following:

• Fundamental components: they are objects with their own private state and
operations rather than functions.

• Objects may be designed and further implemented sequential or concurrently. A
concurrent object may be a passive object whose state is only changed through its
interface or an active object that can change its own state without intervention.

• The process of OO design includes activities to design the system architecture,
identify objects in the system, describe the design using different object models (e.g.
static –class, and dynamic – sequence, state, etc.) and document the object
interfaces.

Comparison and contrast should be made between the two paradigms. Tasks and
Processes are the key, unit elements in real-time design, as the main feature of such
software is concurrency, manifested by multitasking and multiprocessing.

Similarly, Objects are key, unit elements in OO design. Communication between objects
is achieved by sending messages, with or without time constraints. Unlike real-time
design, concurrency is not necessarily a main feature.

b)
To answer this part, the candidate must be able to relate the discussion in Part. In
general, the real-time design is considered as a suitable design method because of the
characteristics of the problem. However, an OO design method with capability of
handling concurrency is also possible, but justification must be given for the handling of
the real-time features. Having considered this, the student’s advice can also include
other aspects, such as company’s experience and expertise, consideration of reuse, etc.

Examiner’s Guidance Notes:
For part a), candidates should show a clear understanding of key concepts of the two
design paradigms. Explanation of the notions with reference to particular design
methods would attract extra marks.

The answer to part b) builds on the part a) with a justification of the choice. Sometime
candidates simply make a recommendation without giving justification, which does not
meet the requirements.

Question 3

a) Structured software development methods often include data flow diagrams
(DFDs), state transition diagrams (STDs) and entity relationship diagrams
(ERDs) to model different aspects of systems. For each of these three diagram
types:

1. indicate what aspect(s) of a system the diagram type should be used to model
2. illustrate the notation employed
3. provide an example diagram fragment that relates to a system with which you

are familiar, and include a short explanation of what the diagram fragment is
modelling.

 (15 marks)

b) Consider a software development team that has been using structured
methods in their system development activities, but until now has only ever
used simple diagram editors and word processors to document its models.
The team leader is considering introducing a simple workbench CASE tool
which supports the particular method that they are using. Discuss, in detail,
the benefits and possible problems that the introduction of such a tool would
provide.

(10 marks)

Answer Pointers
a)
Expect coverage of the following:

• DFD
• Used for modelling functional aspects of a system (flow and

processing/transformation of data)

• Symbols include: process, data flow, data store, external entity
• Diagram of each symbols and usage
• STD
• Used for modelling time-dependent (dynamic) aspects of a system
• Symbols include: State, transition, condition/event and action
• Diagram to illustrate symbols and usage
• ERD
• Used for modelling static aspects of a system (relationships between data items)
• Symbols include: Entity(different kinds of), Relationship(different kinds of), cardinality

mechanism
• Diagram to illustrate symbols and usage

b)
Expect students to include points such as the following:
• Benefits
• Correct method support (rules enforced)
• More efficient than editing
• Consistency checking – hence improve quality
• Problems
• Culture change – reluctance from some staff
• Legacy projects use old system – hence maintenance problem
• Cost of new software (plus platform/infrastructure possibly)
• Training cost

1 mark for each valid (clearly made) point up to maximum available. Expect balance of
benefits and problems for full credit

Examiner's Guidance Notes:
For part (a), several candidates did not demonstrate a clear understanding of the
different aspects of a system that each of the notations is used to model. Basic symbols
described were reasonable in general, however some of the diagram examples were
poor, and didn’t always employ the symbols presented earlier.

For part (b), many answers started well but became repetative and missed important
points. Candidates would benefit from taking time to consider the points they are going
to make and “design” their answer in rough first, to ensure that it is well structured.

Question 4

(a) Software reuse can be achieved at different levels (analysis, design, coding)
and from different perspectives (application system, component and function).
Choosing one perspective, elaborate the notion of reuse at these different
levels.

(12 marks)

(b) In the context of software project planning, identify THREE reusable artefacts
and describe the mechanism by which reuse of each artefact can be achieved.

(13 marks)

Answer Pointers

a)
Expect the discussion of the reuse at three levels, and each with explanation of the
reuse mechanism. Application system reuse: The whole of an application system may
be reused either by incorporation it without change into other systems or by developing
application families that may run on different platforms or may be specialised to the
needs of particular customers.
Component reuse: Components of an application ranging in size from sub-system to
single objects may be reused. For example, a pattern-matching system developed as
part of a text processing system may be reused in a database management system.
Function reuse: Software components which implement a single function, such as a
mathematical function, may be reused. This form of reuse is often realised through the
use of library.

Alternative, the candidate could also choose another perspective of reuse: analysis,
design and coding. The higher the level of abstraction of the reuse is at, the more
significant benefits it will bring in.

b)
Expect to cover both the artefacts as well as mechanisms.
The artefacts are: project plans, cost estimates, architecture, requirements models and
specifications, designs, source code, user and technical documentation, human
interface, data, and test cases. The mechanism will be related to the artefact. These
could include, department policy, good practices, use of template and standards, use of
library, etc. The student must explain how the mechanism enable or encourage the use
of the relevant artefact.

Examiner’s Guidance Notes:
For part a), to understand the notion of reuse is the key. The discussion of reuse can be
from either of the two perspectives. However, examples of each reuse are essential.
Sometimes, candidates fails to give examples to demonstrate their understandings.

For part b), answers to both artefacts and mechanisms are requires. Reference to the
candidates’ own experience and supply of examples strengths the answer considerably
and would be highly recommended.

Question 5

a) Discuss the relationship between software engineering process and product
quality using diagrams for illustration. Based on your understanding or
experience, you should include key activities in a typical process for quality
checks of design documents.

(13 marks)
b) Assume that you are the manager of a software development team and would

like to introduce the concept of software process metrics to your team. Write a
short report that could be used to introduce the team to the concept of
software process metrics. Your report should explain the different classes of
process metric that can be collected and should indicate how you will decide
what measurements to take and how to use the results.

 (12 marks)

Answer Pointers

a)
This question examines the candidate’s understanding of the theory and relating the
theory to practice of software engineering. A basic assumption is that product quality is
related to the production process. This is especially relevant in automated production
systems (i.e. with a heavy use of CASE tools) and "mass production" systems (such as
in software houses).
A diagram is required in the answer, in which it must show interaction of people of
different roles, and iteration of reviews, revision and final approval. The candidate is
expected to use his/her own understanding and experience.

b)
Expect consideration of:
• Different classes of process metric:
• Time taken for process to be completed: could be total, calendar, focussed on

particular engineers, etc…
• Resources required for particular process: effort (person-days), travel costs,

hardware resources, etc…
• Number of occurrences of a particular event: e.g. events - defect discovered,

requirements change request made, etc…
• How decide what measurements to make?
• GQM approach possible
• Goal – consider what trying to achieve (e.g. improve programmer productivity)
• Question – refined goals – specific areas of uncertainty (e.g. How can number of

debugged lines be increased?)
• Metrics – measurements that need to be collected to answer the specific questions
• What do with results?
• Analyse data focussing on specific questions posed
• Make sure feed into process improvement
• Re-measure when process updated
• De-focus personal issues – no link to appraisal

Examiner's Guidance Notes:

For part a), the candidate must be able to distinguish the quality of product and process,
and discuss the relationship between them. Using own experience or showing examples
is an effective way to demonstrate the candidate’s understanding and ability of applying
the theory.

For part (b), some answers again reflected a lack of thought to structure, and contained
large chunks for which no credit could be awarded. Candidates were aware of software
metrics in general but many lacked an understanding of “process” metrics.

