
1 (of 6)

THE BCS PROFESSIONAL EXAMINATION
Professional Graduate Diploma

April 2002

EXAMINERS’ REPORT

Software Engineering

The general readability of student scripts have improved and presented fewer
difficulties this year. However, spelling, grammar, and the organisation of answers in
some centres remain problematic. Further improvements could be made in
producing answers that address the question as set, and is structured in a manner
that gives a clear focus and a strong sense of continuity, intellectual engagement,
discussion, or debate. Some candidates simply set their answers out as a set of
bullet points, mere descriptions of products or processes; or the reproduction of a
collection of lecture notes or memorised textbook materials.

Question 1

Discuss the key principles of software engineering for the development of
software systems that, when applied, can lead to solutions that are modifiable,
efficient, reliable, and understandable.

 (25 marks)

Answer Pointers

This question assesses the candidate’s awareness of the fundamental principles
underlying software engineering that can give rise to the quality characteristics of
modifiability, efficiency, reliability, and understandability. A good answer will:

a) identify the principles of abstraction with information hiding, modularity with

localisation, and uniformity with completeness, and confirmability, as key
principles in software development.

b) provide clear definitions and illustration of, and differentiation between, each

principle. For example, abstraction is the ability to extract essential properties
and model from different perspectives whilst information hiding is the
concealment of that which is not essential to the use or description of that which
is being modelled; modularity enables the management of structural complexity
by decomposition into networks of smaller, more easily understood units. Thus,
localisation in this context will mean that side effects from a unit’s behaviour is
confined to a well-defined area. Finally, uniformity is about consistent notation,
structures, and program flows with common patterns such as sequence, iteration,
and selection structures permitting completeness and confirmability where
essential components can be identified and are testable.

c) provide clearly reasoned arguments about the application and limitations of these

principles in the software industry. Thus, it could be argued that “In the software
industry today, the realisation of the objectives is very dependent on the degree
of interaction between developer and user. The less involved the user, the more
likely it is that the system will lacking in one or more areas. For example, whilst
the developer may be able to demonstrate consistency, it may be that others are

2 (of 6)

more able to judge completeness. Abstraction needs to remain a medium by
which user and developer can share a common view of the intended system, and
modularity the mechanism for a common understanding of its component
behaviour.”

Examiner’s Comments
This was a popular question alongside Q2, but was poorly answered, and many
failed. Whilst the intention of this question was to focus on programming concepts,
many students’ interpretation were that it was concerned with the software
development life cycle model. Thus, the answers provided in many instances were
extensions to Q2.

There are a number of issues that have been raised as a result. Firstly, there was no
shared understanding of the term “key principles” across centres, thus a wide variety
of ideas were presented by students. Secondly, many of the answers seemed to
indicate that candidates were less able to discuss technical issues to do with
program development, and more apt to present management generalisation of the
software lifecycle process. Finally, many candidates found it difficult to deconstruct
the question and, identify and discuss the key issues. Thus, many of the answers
were mere reproduction of memorised lecture material.

As a result of these observations, marks were also awarded for plausible answers
that identified and discussed key principles within the context of the software
lifecycle. But, very few were even able to benefit from this concession.

Question 2

2. a) Describe the SPIRAL software development process and comment

critically on its suitability for a modern software development project.
 (15 marks)

b) Your Managing Director has asked you to recommend a life cycle model

that he should implement for a RAD (Rapid Application Development)
project recently contracted to your firm. Sketch the plan of a life cycle
model you would choose, and identify three or four suitable milestones
that would measure progress. Make sure you include justifications for
the recommendations you plan to make. (10 marks)

Answer Pointers

A very popular question.

Key points of a good answer to (a) were the appreciation of risk, the possibility of
stopping a project that exhibited too much risk, and knowledge of the phases
(determine objectives, identify and assess risk, develop and verify next-level product,
and plan next phase) plus anywhere-near decent grasp of the phase specific
processes in each step of the Spiral Model.

A good answer to (b) depended on giving reasons for the life cycle model that was
chosen.

Examiner’s Comments

3 (of 6)

Most students missed the utility of stopping a project of risk proved too great.

For the element about suitability, very few students related the Spiral Model to its
home territory, that of developing new products using innovative or untested
technology. A reasoned argument about ‘modern suitability’ was acceptable
providing rationale was clear. One of the best answers commented that risk was
encapsulated and mitigated within each product release of the DSDM method. This
neatly described the shift of effort from combating high-tech risks of the 80s to
combating business-tech risks of the new Millennium.

Few candidates were able to justify their selection using the criteria of RAD – use of
timeboxing, use of high productivity tools coupled with frequent iterations that
produced a product each time, concentration on business issues rather than
engineering issues, and maintaining management visibility.

Question 3

A vending machine dispenses a wide range of products. The temperature of
the machine is monitored on a regular basis and maintained between 15 and 21
degrees Celsius. If the temperature is outside of this range the machine will
shut down.

A product will only be dispensed if the customer has tendered at least the
minimum charge, selected an available product, and then pressed the
“dispense” button. The machine will then return any change, but no greater
than what was owed to the customer. Finally, the customer can cancel an
order at any time by pressing the'cancel' button and the money tendered will
be returned.

Using an appropriate development method demonstrate how you would model
the process, data, and the timing control aspects of the vending machine
outlined.

[Note. Marks will be awarded for clear and relevant sets of diagrams with
supporting annotation and descriptions.]

(25 marks)

Answer Pointers

This question assesses the candidate’s theoretical understanding and practical
awareness of software development methods. A good answer should demonstrate
knowledge of methods and notation for the representation of process, data, and
timing. Further, different diagramming models should be applied to the specific
aspects of the vending machine. For example, using SSADM

• Develop process models (Data Flow Diagrams)context diagram and Level 1 DFD

showing typical processes such as: dispense, monitor/maintain, select, cancel;
and flows – temperature, product selected, amount tendered;

• Develop logical data models (Entity Relationship Diagrams) where the entities
include: machine, product, temperature, customer, order, charge, money; and
relationship such as one-to-many (customer->order)

• Develop Entity Life History models. For example, an order made by a customer
which is processed, dispensed, and closed. Another could be the machine

4 (of 6)

whose temperature is self-monitored, and shuts down when the temperature is
out of range.

• Diagram(s) and annotations that represent the complete system either from a

time, data, or process-based perspective using the components identified earlier.
For example, the dispense process should have flows inwards of the product
selected, minimum tendered (flag), and the dispense signal; and a flow outwards
entitled dispensed (flag perhaps). Likewise, the ‘product selected’ flow would be
the outflow from the select process.

Examiner’s Comments

This was the least popular question on the paper, but many more candidates
attempted it, and provided reasonably good answers compared to previous years.
This is encouraging and most welcome considering that this type of question is one
of the most challenging, as it requires the student to demonstrate analytical,
modelling, and problem-solving skills under closed-book examination conditions.

Question 4

A set of qualities for a software product has been described by the following
set of discrete, separate 'abilities':
functionality, reliability, usability, efficiency, maintainability and portability.

Briefly define any FIVE of these with short descriptions that clearly identify
what is meant by each and how they differ one from another.

 (25 marks)

Examiner’s Comments

A very popular question.

Not enough thinking went into some of these answers. Too many adopted a process
mind-set, and described HOW to achieve, for example, functionality (extensive
requirements gathering) , or efficiency (lots of testing). Good answers described
attributes of, for example, WHAT were usability (easy to learn, easy to operate, easy
to understand) or WHAT attributes of maintainability (easy to study, easy to test,
easy to add new bits).

5 (of 6)

Question 5

a) ISO 9001 has many paragraphs that describe compliance to quality.

Compliance with ISO 9001 requires compliance with all the systems
described in the standard. This form of quality compliance has been
described as 'top down'. On the other hand, a method of complying with
one system or subsystem at a time, as a way of obtaining gradual
improvement, has been described as 'bottom-up'.

Comment on each of these descriptions. Give reasons for your answers.

(15 marks)

b) You are asked to set up a training session for some staff because your

manager is concerned that there is insufficient awareness of quality
procedures in your firm. Describe, with reasons, four or five topics you
would set for such a training programme and identify, with reasons, the
particular sequence in which you would introduce them. (10 marks)

BCS Software Engineering – Professional Graduate Diploma - Additional
Information for Q5

Systemic Requirements
Establish your quality system
Document your quality system

Management Requirements
Support quality
Satisfy your customers
Establish a quality policy
Carry out quality planning
Control your quality system
Perform management reviews

Resource Requirements
Provide quality resources
Provide quality personnel
Provide quality infrastructure
Provide quality environment

Realisation Requirements
Control realisation planning
Control customer processes
Control product development
Control purchasing function
Control operational activities
Control monitoring devices

Remedial Requirements
Perform remedial processes
Monitor and measure quality
Control non-conforming products
Analyse quality information
Make quality improvements

6 (of 6)

Examiner’s Comments

(a) Few answers, even fewer sensible answers. Many answers became word-blind,

and gave a description of top-down testing versus bottom-up testing. Very few
answers found merit in the idea that improving quality a little at a time was better
than testing quality on 20 fronts all at once. Whenever an answer was supported
by good argument and examples, it gained high marks.

(b) The question was asking candidates to select topics from the supporting material

provided and justify their selection and sequencing. Very few did so. Most
preferred to offer their own views of what to deliver. Where these views were
supported by reasoned arguments about relevance, they were admitted and
awarded high marks. Too many candidates simply itemised what they would
teach about quality, and gave no reasons for its selection or sequencing.

