
THE BCS PROFESSIONAL EXAMINATIONS
BCS Level 6 Professional Graduate Diploma in IT

April 2008

EXAMINERS' REPORT

Programming Paradigms

General Comments

The number of candidates sitting this paper fell by some 25% this year but the pass
rate remained high at around 95%. Candidates seem to have been properly
prepared for the examination and to understand the material, despite its advanced
nature.

Questions 1 and 2 were, as always, by far the most popular. Question 3 was very
unpopular and was comparatively badly answered.

Question 1

a) Describe the features an Interactive Development Environment (IDE) should

have to support a team of software developers.
(10 marks)

[Syllabus section 7b, Programming Environments]
Candidates were expected to list a range of program development tools typically
found in an IDE and to describe what they do. Candidates could have described, for
example, debuggers, testing tools, linkers, configuration tools, loaders, screen
painters, code generators, etc. A better answer would also have considered tools to
support the team aspects of software development such as tools that allow modules
to be checked-in and out or tools to support version managemen. Such tools are
important if multiple programmers are working on the same area, particularly for
teams not based physically close to each other.

b) Discuss the advantages and disadvantages of using such an IDE, evaluating

how it aids productivity and improves the quality of the code produced.
(15 marks)

[Syllabus section 7b, Programming Environments]
In this part of the question, candidates were expected to reflect on the real
usefulness of these tools. They should have indicated why they think the tools are
important or not. For example, they could argue they improve the speed and
performance of the programmer, help with debugging, testing, etc. Therefore
programmer productivity is increased. Most things have disadvantages too and
these could include that the programmer may fall into bad programming practices by
relying on the tool to correct mistakes, so encouraging hacking, rather than getting
the programmers to check and test their code thoroughly themselves.
For both parts, examples are expected of appropriate tools, for example, Microsoft
Visual Studio, Borland C++, Borland JBuilder, etc. They needed to identify what
elements of the tool are useful to productivity and say why they think are beneficial or
not in a team environment.
This proved to be a popular question and on the whole was well answered. Part a) in
particular often attracted high or full marks. Most candidates could describe the main

features of an IDE; marks were generally lost by not discussing how the features of
an IDE could be applied to a team environment.

Part b) was also generally answered well. Candidates could normally describe the
advantages of an IDE and went into these in great depth. For this part, marks were
lost where candidates concentrated solely on the advantages, giving little thought to
any disadvantages. Other answers concentrated only on describing the advantages
and disadvantages, with little evaluation on how IDEs increase productivity and help
improve the quality of the code produced. A higher mark went to candidates who did
include this evaluation.
99% of candidates attempted this question, of whom 95% achieved a pass mark on
it.

Question 2

A software company currently uses conventional (procedural) programming
languages for its systems development. It is now considering moving to an object-
oriented programming language. Discuss the effects of changing from a conventional
to an object-oriented paradigm. Within your answer consider the benefits, overheads
and disadvantages of this approach. Illustrate your answer with appropriate
examples. In the programming world, there exists a variety of languages that a
programmer can use to develop a software system.

(25 marks)
[Syllabus section 7c Object Orientation]
The candidates were expected to consider the advantages and disadvantages of
using an object-oriented (OO) language such as C#, C++ or Java. The answer
should have included a discussion of the concepts found in OO languages to aid the
development of a system, for example, inheritance, polymorphism, encapsulation,
information hiding.
Candidates needed to reflect on what benefits or problems these concepts bring to
program development compared to traditional development techniques, e.g., reuse.
Examples from an OO programming language should have been included to illustrate
the points made.
This was a popular question that produced good answers overall. A lot of candidates
focused on discussing the advantages of the object-oriented approach and went into
great length in describing the features. Some discussion was needed of the
disadvantages and overheads of this approach too. Concise examples of concepts
were welcome and gained credit, but it was not necessary to write several pages of
code with little explanation or description.
The candidates who scored the highest marks, were those who could reflect on the
impact of changing from a conventional language to an object-oriented paradigm.
90% of candidates attempted this question, of whom 96% achieved a pass mark on
it.

Question 3

a) Discuss the role of higher-order functions within the implementation of

applicative (functional) programming languages.
(12 marks)

b) In a functional programming language, an expression is evaluated within the

context of an environment. Discuss this statement, commenting upon any
similarities, or otherwise, that might exist between functional and imperative
programming languages.

(13 marks)

[Syllabus section 7d, Functional Programming]
The selection of two different aspects of functional programming was designed to
allow candidates to demonstrate their breadth of understanding of the issues
involved.
In part a) of the question, candidates were expected to define the nature of higher-
order functions, and provide suitable illustrative examples of their role within a
functional program. It was expected that the importance of such functions would be
discussed, in particular the map function, which should have highlighted a major
difference between functional and imperative languages. Whilst candidates
introduced higher-order functions, mapping, sorting algorithm illustrations, and
variable storage minimisation, the concept of functions having functions as
arguments was not clearly presented. Typically the map function was not used to
illustrate the importance of higher-order functions. Some candidates mentioned that
such functions abstract away most of the control structures that are essential in
imperative languages.
In answer to part b), candidates were expected to demonstrate functional
programming specific knowledge, and to understand how environments are relevant
to imperative programming languages. Candidates were asked to comment upon
similarities, or otherwise, and should have discussed issues such as bindings,
structures, signatures and functors. Typically candidates’ knowledge of an
environment was illustrated with the aid of an imperative language example. Whilst
credit was given for this, discussions did not include any detailed reference to
functional programming languages, and hence typically the issues such as bindings,
structures, signatures and functors were not mentioned.
14% of candidates attempted this question, of whom 60% achieved a pass mark on
it.

Question 4

a) What are the two major abstractions that characterise logic programming, and

how are these compromised within the implementation of a practical logic
programming language?

(12 marks)

b) Many languages have attempted to combine the advantages of logic
programming with other programming paradigms such as object-oriented
programming and functional programming. Present arguments for and
against this integration.

(13 marks)
[Syllabus section 7e, Logic Programming]
In part a) of the question, candidates were expected to demonstrate knowledge of
the basic concepts of pure logic programming. Based upon familiarity with a real
logic programming language, candidates were expected to understand that ‘extra-
logical’ features are required, which are not in keeping with a pure logical approach.
The compromise discussion referring to logical or non-logical aspects, such as
interface design or time dependency versus simplicity and consistency.
Candidates introduced the basic concepts of pure logic programming and the
compromise with implementation issues such as specific search and order of
computation rules. Typically candidates did not discuss other issues such as
interface design, for example output statements, the implementation of numerical
computation, and the use of the cut to improve efficiency, etc.

In answer to part b), candidates were expected to present ‘for’ arguments that might
have included the very close relationship between the mathematics of functions
(lambda calculus) and logic. The ‘against’ arguments were expected to be greater in
number, and could have included differences in unification, use of inference engine
for logic programming, etc.
38% of candidates attempted this question, 80% of whom achieved a pass mark on
it.

Question 5

For a programming language to support concurrency, solutions to the problems of
process synchronisation and communication are required. Elaborate on these
problems, and describe the range of solutions that are available. In your answer,
discuss the relative strengths and weaknesses of each solution.

(25 marks)

[Syllabus section 7f, Related Issues]
Candidates were expected to present a wide range of solutions including shared
memory, semaphores, monitors, and synchronous message passing. To obtain high
marks candidates were expected to demonstrate their understanding of the strengths
and weaknesses inherent to these solutions. Additional credit was given for those
candidates who were able to illustrate their answer with the aid of real concurrent
language examples. Clarity and conciseness of exposition were also rewarded.
Whilst the candidates managed to provide a satisfactory overview of the problems
referred to, in some cases the solutions they described were limited. However, a
number of real concurrent problem examples were given, and a number of real
concurrent language examples provided.
There were a number of excellent answers to this question and many answers
provided suitably annotated examples and therefore attracted higher marks.
60% of candidates attempted this question, 96% of whom achieved a pass mark on
it.

