
W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\pgdpp.doc
1 (of 4)

THE BCS PROFESSIONAL EXAMINATION
Professional Graduate Diploma

April 2003

EXAMINERS’ REPORT

Programming Paradigms

General
There was a 100% pass mark for this module. The highest mark was 76% and the
mean was 56%. The general level of candidates’ performance was therefore
satisfactory and the mean of 56% is a pleasing improvement on last year’s mean of
51%.
It was notable that questions 4 and 5 proved much less popular than questions 1, 2 and
3. Specifically, questions 4 and 5 accounted for a total of 18 attempts, while questions
1, 2 and 3 accounted for 126 attempts.

Question 1 (Syllabus section 2)
1. a) Describe what tools are typically found in an Interactive Development

Environment (IDE). (10 marks)
 b) IDEs aim to improve the productivity of a programmer. Discuss how these

tools can achieve this and also improve the quality of the code they
produce. (15 marks)

For the first part, candidates were expected to list the program development tools
typically found in an IDE and describe what they do. Candidates might discuss
debuggers, testing tools, linkers, configuration tools, loaders, screen painters, code
generators, etc.
Part b required the candidate to reflect on the real usefulness of these tools. Within
their discussion they should have indicated why they think the tools are important or
not. For example, they might argue that they improve the speed and performance
of the programmer, help with debugging, testing, etc. Disadvantages could include
the encouragement of bad programming practices by relying on the tool to correct
mistakes, rather than getting the programmers to check and test their code
thoroughly themselves.
For both parts, examples were expected of appropriate tools, for example, Microsoft
Visual Studio, Borland C++, Borland JBuilder, etc. Candidates needed to identify
what elements of the tool were useful to productivity and say why they think are
beneficial or not.
One the whole candidates made a good attempt at part a, often gaining high or full
marks. In part b, some candidates were weak at discussing how the tools could
improve productivity, or did not reflect on the fact that there could be bad points as
well.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\pgdpp.doc
2 (of 4)

Question 2 (Syllabus section 3)

2. Recently language design has focused on “Programming in the Large”. What

concepts are found in object-oriented programming languages to support the
development of large-scale applications? Include suitable examples.

 (25 marks)

 Candidates were expected to consider the advantages and disadvantages of using

an object-oriented (OO) language such as Smalltalk, C++ or Java. They should
have should included a discussion of the concepts found in OO languages that aid
the development of large systems, for example, inheritance, polymorphism,
encapsulation, reuse, information hiding. They needed to reflect on what benefits or
problems these concepts bring to program development and a good answer would
have reflected on how it helps(or hinders) in a larger project. Examples from an OO
programming language to illustrate the points made should have been included.

 Candidates proved good at describing the concepts of object-orientation and gained
an average mark for this if the descriptions were good. For a higher mark, they
needed to reflect on which object-orientated features help with large-scale
applications.

Question 3 (Syllabus section 1)
3. “Every language is designed to solve a particular set of problems at a

particular time according to the understanding of a particular group of
people” (Bjarne Stroustrup, The Design of C++).

 Choose two different programming paradigms and evaluate their strengths
and weaknesses, illustrating your answer with examples from suitable
programming languages. Within your discussion explain what particular set
of problems they aim to address. (25 marks)

 A description of the characteristics of the chosen paradigms should have been

given, with an evaluation of their strengths and weaknesses. Within their discussion
candidates needed to discuss what types of applications the paradigm is most
suitable for and a good answer would have related the characteristics of the
paradigms to features of the particular types of applications.

 For example, imperative languages are more general-purpose languages and could
be used for a variety of applications, whereas non-imperative languages including
functional and logical languages tend to be targeted at more specialised
programming applications. OO languages may suit a company that uses OO
methodologies for designing the system.

 A basic answer would have covered the description of the two paradigms, with
some evaluation. To get a good mark, some discussion of what type of system the
paradigm is aimed at was required.

 On the whole, candidates made a good attempt at this question, most being able to
describe two different paradigms. Weaker candidates lost marks by only discussing
one paradigm fully, or focusing on the strengths and ignoring the weaknesses. An
average mark was given to candidates who discussed two paradigms but did not
reflect on what sort of problems the particular paradigm was aimed at.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\pgdpp.doc
3 (of 4)

Question 4 (Syllabus sections 4 and 5)
4. a) What are the two major abstractions that characterise logic programming?

How are these compromised within the implementation of a practical logic
programming language? (12 marks)
Candidates were expected to demonstrate their knowledge of the basic
concepts of pure logic programming. Based upon their familiarity with a real
logic programming language, they were expected to understand that ‘extra-
logical’ features are required, which are not in keeping with a pure logical
approach. The compromise discussion could refer to logical or non-logical
aspects, such as interface design or time dependency versus simplicity and
consistency. No reasonable approach was rejected.

b) In a functional programming language, an expression is evaluated within
the context of an environment. Discuss this statement commenting upon
any similarities, or otherwise, that might exist between functional and
imperative programming languages. (13 marks)
Candidates were expected to demonstrate specific knowledge of functional
programming, and to understand how environments are relevant to imperative
programming languages also. Candidates are asked to comment upon
similarities, or otherwise, and should have discussed issues such as bindings,
structures, signatures and functors.

Question 5 (Syllabus sections 6)
5. a) Why are process synchronisation and communication important activities

within programming languages that support concurrency? (13 marks)

Candidates were expected to demonstrate their understanding of the need for
synchronisation and communication within concurrent software. This need
presents many problems, and candidates were expected to describe the
importance of synchronisation and communication in the context of the models
that have been developed to overcome these problems. Answers might have
included a discussion of the shared memory model, the mutual exclusion
problem, monitors, and synchronous message passing. Credit was given for any
relevant and correct discussion.
There were some good attempts at this section, and students were able to
explain the importance of process synchronisation and communication with the
context of concurrency supporting programming languages.

 b) A sequential program terminates when it has executed its last statement.

What is the problem of program termination within the context of
concurrent programming? Describe two solutions to this problem.

 (12 marks)

Candidates were expected to introduce the subject of distributed termination
and the associated problem of detecting termination or deadlock. Solutions to
this problem might have included the use of signalling channels and process
graphing, the Dijkstra-Scholten algorithm, the use of termination markers or

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\pgdpp.doc
4 (of 4)

distributed snapshots. Credit was given for each solution correctly put.
Solutions using examples from real concurrency supporting programming
languages were awarded greater credit.
Generally the responses to this section were weaker than the previous section.
Whilst some outline solutions were provided to the problem of program
termination within the context of concurrent programming, the answers did not
provide the level of required detail. For example, no student mentioned the
Dijkstra-Scholten algorithm.

