
1 (of 5)

THE BRITISH COMPUTER SOCIETY
THE BCS PROFESSIONAL EXAMINATION

Professional Graduate Diploma

April 2002

Programming Paradigms

The pass rate was 92%. The highest mark was 75%. The general level of
candidates’ performance was therefore satisfactory although the mean of 51% is
indicative of the fact that few candidates did really well.

Question 1

The expression “Horses for Courses” is a term used in the racing world to
mean choosing the right racehorse for a particular racecourse. In the
programming world, there exists a variety of programming languages that a
programmer can use to implement a computer system. The same expression
is used to mean choosing the right language for the right application.

Choose TWO different types of programming language (such as data-oriented,
imperative, object-oriented), and compare and contrast them, discussing what
characteristics they have and what type of applications they are most
appropriate for. (25 marks)

Answer Pointers
The question is open to a variety of answers depending on which programming types
have been chosen for the examples. The syllabus covers imperative languages (e.g.,
Fortran, COBOL, PL/1, Algol, C, etc.), data-oriented languages (APL, SETL), object-
oriented languages (C++, Smalltalk, Java) and non-imperative languages (Lisp, ML,
Prolog).
A description of the characteristics of the chosen languages was expected. It was
also important that candidates discuss what types of applications the language is
most suitable for and a good answer would relate the characteristics to the
application. For example, imperative languages are more general-purpose
languages and can be used for a variety of applications, whereas non-imperative
languages include functional and logical languages and are targeted at specialised
programming applications.
Illustrations of the characteristics and points discussed were expected to
demonstrate the candidates' practical understanding of the theoretical points
discussed.
Candidates offered few examples. Often they were good at one of the languages
chosen but weak on the other - generally they chose OO and imperative. Some
seemed to be guessing that their alternative language was just the opposite of the
one they were "good" at.
Sometimes answers were very superficial, with little expansion on points made.
Quite a few candidates wrote very little, or nothing at all, on appropriate applications
for the languages.

2 (of 5)

Question 2

a) Interactive Development Environments (IDEs) are now commonplace for

most programming languages. Describe briefly the sorts of features
available in such an environment to support the programming
development process.

 (10 marks)

b) Evaluate the success of these tools in improving the productivity of
programmers and the quality of the code they produce.

 (15 marks)

Answer Pointers
Candidates were expected to discuss the sort of tools available in an IDE for
developing a program, from writing the code to testing it, plus debugging and
configuration management utilities.
This part of the question was generally well answered.
(b) Evaluate the success of these tools in improving the productivity of

programmers and the quality of the code they produce.
This question required candidates to reflect on the real usefulness of these
tools. Within their discussion they should have indicated why they thought the
tools were important or not. For example, they might have argued that they
improve the speed and performance of the programmer, help with debugging,
testing, etc. Disadvantages could include that the programmer may fall into
bad programming practices by relying on the tool to correct mistakes, rather
than checking and testing it thoroughly themselves.
For both parts, examples were expected of appropriate tools, for example,
Microsoft Visual Studio, Borland C++, Borland Jbuilder, etc. They needed to
identify what elements of the tool are useful to productivity and to say why
they thought they were beneficial or not.
This was not as well answered as section (a). Some candidates gave a good
list of advantages but little on disadvantages and some did the opposite.
Some candidates just repeated what they had said in section (a) with little
extra discussion. In general, answers were reasonably good at looking at how
the programmer's productivity was speeded up, but not on reflecting on the
quality of the code.

Question 3

a) Discuss the role of constructors, pattern matching and recursion, when

using compound types within an applicative (functional) programming
language. Provide illustrative examples of their role within a functional
programming language with which you are familiar.

 (15 marks)

b) Lazy evaluation offers significant advantages over that of eager evaluation
when performed within the context of functional programming. Distinguish
between these types of evaluation, and describe what these advantages
are.

 (10 marks)

3 (of 5)

The selection of two different aspects of functional programming was meant allow
candidates to demonstrate their breadth of understanding of the issues involved.
In this section, candidates are expected to describe how, for example, lists can
be created using constructors which in turn can be used when defining functions
by pattern matching. The importance of recursion in these functions should have
been discussed, as, the absence of “statements,” it is the only way of creating
loops in expression evaluation. Candidates were expected to provide illustrative
examples of the respective roles that could describe, for example, how to define a
(recursive) type for trees whose nodes are labelled with integers, and, in turn,
how this type can be used to write functions that process the tree. Any such
example would have been favorably received.
A few good points were made but answers did not address the question properly.
Constructors and pattern matching were not addressed.

(b) Lazy evaluation offers significant advantages over that of eager evaluation
when performed within the context of functional programming. Distinguish
between these types of evaluation, and describe what these advantages
are.
In answer to section (b), candidates were expected to define the terms used,
and provide suitable illustrative examples for clarification. The importance of
the implications (and hence advantages) of each evaluative mechanism
should have been demonstrated in real terms, which might relate to storage,
or time-based outcomes. Credit would have been given for any arguments
correctly put.
This section was badly answered. No illustrative examples were given, and
no evaluation mechanism was demonstrated in real terms of storage or real-
time outcomes.

Question 4

a) Real logic programming languages require “extra-logical” features.

Discuss this statement and comment upon any compromises that these
features might create.

 (12 marks)

b) It has been proposed that logic programming languages should be

integrated with other programming paradigms such as functional
programming. Present arguments for and against this integration.

 (13 marks)

Answer Pointers
The selection of two different aspects of logic programming should have allowed
candidates to demonstrate their breadth of understanding of the issues involved.
In section (a) of the question, candidates were expected to demonstrate their
knowledge of the basic concepts of pure logic programming. Based upon their
familiarity with a real logic programming language, candidates were expected to
understand that ‘extra-logical’ features are required, which are not in keeping with a
pure logical approach. The compromise discussion might refer to logical or non-

4 (of 5)

logical aspects, such as interface design or time dependency versus simplicity and
consistency. No reasonable approach was rejected.
Not all students properly understood the term “extra-logical”. Some students even
considered that a logic program that was capable of artificial intelligence solving
capabilities was “extra-logical”. Nevertheless, there were some good answers from
those students who did understand the term.
(b) It has been proposed that logic programming languages should be integrated with
other programming paradigms such as functional programming. Present arguments
for and against this integration.
In answer to this section, candidates are expected to present ‘for’ arguments that
might include the very close relationship between the mathematics of functions
(lambda calculus) and logic. The ‘against’ arguments were expected to be greater in
number, and might have included differences in unification, use of inference engine
for logic programming, etc. Credit was given for any arguments correctly put.
Generally the responses to this section were poor. Some students did not attempt to
answer this section, or, if they did, were unable to formulate arguments ‘for and
against’ integration.

Question 5

a) Describe what is meant by the term concurrency when used within the

context of multi-programming operating systems, multi-tasking operating
systems and embedded systems. Illustrate your answer with examples for
each system. (10 marks)

b) Explain the mutual exclusion problem for concurrent programs. Using

simple examples from programming language examples that support
concurrency, discuss the advantages, or otherwise, of the possible
solutions to this problem. (15 marks)

Answer Pointers
a) Candidates were expected to demonstrate some breadth of knowledge of

concurrent systems, and to illustrate the application of this type of computing
using appropriate examples, drawn from their own experience, and/or
background reading. They were expected to define concurrency within the
context of the three systems, and thereby introduce and describe additional
terms such as time-sharing, task scheduling, real-time, and processes.

A number of students failed to describe the term ‘concurrency’ within the context
asked for. They either ignored the systems mentioned, or failed to define them
correctly.

b) Explain the mutual exclusion problem for concurrent programs. Using simple
examples from programming language examples that support concurrency,
discuss the advantages, or otherwise, of the possible solutions to this problem.
Candidates are expected to introduce and define terms such as interleaving and
atomic instructions, and to use these to explain the mutual exclusion problem.
Concepts such as critical and non-critical code sections and Dekker’s algorithm
were expected to be introduced, together with solutions such as semaphores and
monitors. Credit was given for any clear illustration as to the advantages or
otherwise of these solutions.

5 (of 5)

Generally there were some very good answers to this section. A number of
students were able to introduce examples using real concurrency supporting
programming languages. These answers attracted greater credit. No student
mentioned Dekker’s algorithm.

