
THE BCS PROFESSIONAL EXAMINATION

The Professional Graduate Diploma

April 2000

EXAMINERS’ REPORT

Programming paradigms

Question 1 – Answer Pointers

Covers syllabus section 1.

This question required the comparison of two programming types. The syllabus covers
imperative languages (e.g., Fortran, COBOL, PL/1, Algol, C, etc.), data-oriented languages
(APL, SETL), object-oriented languages (C++, Smalltalk, Java) and non-imperative
languages (Lisp, ML, Prolog).

A description of the characteristics of the two chosen languages should have been given
along with a discussion of what types of applications the languages were most suitable for.
For example, imperative languages are more generally applicable and can be used for a
variety of applications, whereas non-imperative languages, including functional and logic
languages, are targeted at specialised programming applications.

Illustrations of the characteristics and points discussed were expected to demonstrate the
candidates' practical understanding of the theoretical points.

The candidates were often good at explaining one type of language in detail, especially
object-oriented languages such as C++, but were weak on comparing it to a second language.
Some candidates mixed up concepts, even for OO, others gave weak examples of their
chosen language type.

A lot of candidates lost marks by not giving examples of an appropriate application, or by gi
ving superficial examples

Question 2 – Answer Pointers

Covers syllabus section 3.

The candidates were required to pick four different concepts from object-oriented
programming and discuss why they are important. Concepts could include classes;
encapsulation and data abstraction; methods and message passing; single and multiple
inheritance; polymorphism, etc.

In their discussion the candidate were expected to say why they thought the concept was
important to OO programming. Examples from an OO programming language such as C++,
Smalltalk or Java should have been included to illustrate the concepts.

In this question the candidates often mixed up terms or misused them, in particular the terms
abstraction, encapsulation and instantiation. Others gave no examples, or only for some of the
concepts. Marks were lost if there was no discussion of why the concepts were important.

Question 3 – Answer Pointers

Both parts cover syllabus section 2.

In part (a) the candidate should have discussed the sort of tools available for developing a
program, from writing the code to testing it. A discussion could include Interactive
Development Environments (IDEs) or Interactive Development toolkits that provide a set of
tools for writing the code, debugging, and testing it, plus configuration management utilities.

Part (b) required the candidate to reflect on the real usefulness of these tools. Within their
discussion they should have indicated whether they thought the tools were important or not.
For example, they could argue they improve the speed and performance of the programmer,
help with debugging, testing, etc. Disadvantages could include that the programmer may fall
into bad programming practices by relying on the tool to correct mistakes, rather than
checking and testing it thoroughly themselves.

For both parts, examples were expected of the appropriate tools, for example, Microsoft
Visual Studio, Borland C++, Borland Jbuilder, etc. They needed to identify what elements of
the tool are useful to productivity and say why they thought they were beneficial or not.

Most candidates answered part (a) successfully. A few lost marks by only giving a brief
discussion of the appropriate tools. Some candidates showed signs of running out of time on
part (b), or again only gave a brief discussion or did not reflect on how the tools improved
programmer's productivity.

Question 4 – Answer Pointers

This question addressed syllabus section 4. The selection of two different aspects of
functional programming was designed to allow candidates to demonstrate their breadth of
understanding of the issues involved. Only one candidate attempted this question.

In part (a) of the question, the candidate was expected to define the nature of higher-order
functions, and provide suitable illustrative examples of their role within a functional program.
It was expected that the importance of such functions be discussed, in particular the map
function, which should have highlighted a major difference between functional and
imperative languages. Whilst the candidate introduced higher-order functions, mapping, a
sorting algorithm illustration, and variable storage minimisation, the concept of functions
having functions as arguments was not clearly presented. The map function was not used to
illustrate the importance of higher-order functions. Nor did the candidate mention that such
functions abstract away most of the control structures that are essential in imperative
languages.

In answer to part (b), candidates were expected to demonstrate functional programming
specific knowledge, and to understand how environments are relevant to imperative
programming languages also. They were asked to comment upon similarities, or otherwise,
and should have discussed issues such as bindings, structures, signatures and functors. The
candidate’s knowledge of an environment was illustrated solely with the aid of an imperative
language example. Whilst credit was given for this, the discussion did not include any
detailed reference to functional programming languages, and hence the issues such as
bindings, structures, signatures and functors were not mentioned.

Question 5 – Answer Pointers

This question addressed syllabus section 5. The selection of two different aspects of logic
programming should have allowed candidates to demonstrate their breadth of understanding
of the issues involved. Only one candidate attempted this question.

In part (a) of the question, candidates were expected to demonstrate knowledge of the basic
concepts of pure logic programming. Based upon familiarity with a real logic programming
language, they were expected to understand that ‘extra-logical’ features are required, which
are not in keeping with a pure logical approach. The reference to compromises was intended
to stimulate a discussion of the need for such non-logical aspects as interface design or time
dependency versus simplicity and consistency.

The candidate introduced the basic concepts of pure logic programming and the compromise
with implementation issues such as specific search and order of computation rules. The
candidate did not discuss other issues such as interface design, for example, output
statements, the implementation of numerical computation, and the use of the cut to improve
efficiency, etc.

In answer to part (b), candidates were expected to present ‘for’ arguments that might have
included the very close relationship between the mathematics of functions (lambda calculus)
and logic. The ‘against’ arguments were expected to be greater in number, and could have
included differences in unification, use of inference engine for logic programming, etc.

The candidate presented arguments for and against functional/logic programming integration,
for which credit was given. However, these arguments were somewhat weak as the
discussion tended to focus more upon a description of each programming paradigm per se,
rather than upon the problems that would arise from their integration.

