
THE BCS PROFESSIONAL EXAMINATIONS
BCS Level 6 Professional Graduate Diploma in IT

April 2008

EXAMINERS REPORT

Distributed & Parallel Systems

General Comments

Despite the steadily increasing importance of distributed and parallel systems in
science, education and commerce, the number of students taking this paper
continues to be very modest indeed. Looking at the performance, several students
appear to be poorly prepared to tackle the examination, which seems to be the trend.
This may be a consequence of the broad range of topics with which the student must
become familiar in order to confidently tackle the paper. Given the above, there were
some very good answers which indicates that good preparation is the key.

Question 1

a) Distinguish between heavyweight and lightweight processes.

(5 marks)

b) Distinguish between blocking and non-blocking inter-process communication
mechanisms.

(5 marks)

c) Distinguish between pre-emptive and non pre-emptive approaches to thread

scheduling.
(5 marks)

d) What is the purpose of the distributed garbage collector in RMI? How is it

implemented?
(10 marks)

Answer Pointers

a) Both heavyweight processes (HWP) and lightweight processes (LWP), both found
in the Linux kernel, are used to achieve multitasking. In contrast to a HWP, LWP
share their address space and system resources with other processes. However,
unlike threads, LWPs have private process identifiers and have parent-child
relationships with other processes. Whilst threads may be managed at the
application level or by the kernel, LWPs are managed by the kernel, operating within
the same scheduling framework as HWPs. LWPs differ from HWPs in that they
posses a minimal execution context and only sufficient accounting information to
enable scheduling. The term “process” usually refers to a running program, whilst
LWP typically represents a thread of execution within a program (indeed, LWPs can
be conveniently used to implement threads).

b) In non-blocking communication framework (e.g., in Linux systems programming in
C, one that uses the IPC_NOWAIT setting), a process does not have its execution
suspended waiting for a data item arrive. Conversely, a blocking communication
mechanism will suspend the receiving process until the expected data arrives. Using
blocking communication, deadlock can occur if the data item does not arrive. With
non-blocking communication, it is necessary to build contingency into the program to
deal with the scenario that the data has yet to arrive (e.g., periodically re-checking,
and performing other duties in lieu of processing the absent data item). However,
blocking is a useful mechanism for synchronizing processes.

c) In preemptive scheduling, processes can be forcibly removed from the CPU when
the scheduler decides that a different process should be furnished with CPU time.
This allows processes that are technically runnable to be suspended. Conversely, in
non-preemptive scheduling, processes must yield the CPU, and cannot be forcibly
removed. The responsibility for this to be done lies with the programmer. Typically,
shorter jobs have a lower priority than longer jobs, though strategies are used to
promote overall fairness (e.g., ensuring that processes do not wait indefinitely).
Where a process is does not yield the CPU, and it is not suspended for other reasons
(e.g., is set to wait for an unavailable resource), it can run to completion.
d) Distributed garbage collection is accomplished by collaboration between local
garbage collection and a specialised module to carry out distributed garbage
collection that counts references to remote objects. The purpose is to ensure that
objects which are no longer referenced either locally or remotely are destroyed, and
the memory they occupied is returned to the system for re-use. Details: 1. Each
server maintains a set of names of processes than hold remote object references for
each of its remote objects (e.g., A.holders is a set of client processes having proxies
for object A). This is held in a column in the remote object table. 2. When a client
receives a remote reference to a remote object, A, it makes an addRef(A) invocation
to the server of that remote object and then creates a proxy. The server then adds C
to A.holders. 3. When a the garbage collector of a client, C, notices that a proxy to a
remote object is unreachable, it invokes removeRef(A) to the corresponding server
and then deletes the proxy. The server removes C from A.holders. 4. When
A.holders is empty, the server’s local garbage collector will reclaim the memory
occupied by A unless local holders exist. [See recommended text by Colouris,
Dollimore & Kindberg].

Examiner’s Guidance Notes

41% of candidates attempted this question, which tested understanding of common
dichotomies in terminology (question A to C), and RMI memory management (D).
Whilst one student attained a near perfect answer of 23/25 marks, 3 of the
candidates achieved 0/25, 1/25 and 2/25 marks respectively, meaning that overall
this question was poorly answered (mean mark 7/25).

Question 2

a) A sequential program has three principal sections. The input section takes

10% of the total time. Processing section takes 70% of the total time. The
output section takes the remaining 20%. What is the maximum attainable
speedup if only the processing part can be parallelized?

(5 marks)

b) Briefly describe a scenario that might lead to super-linear speedup.

(5 marks)

c) Distinguish between the terms scalability and granularity in the context of

parallel applications.
(5 marks)

d) Outline the advantages and disadvantages of cluster computing in contrast to

conventional high performance supercomputing.
(10 marks)

Answer Pointers

a) Given that only 70% of the program can be parallelized, working on the
assumption that a perfect theoretical algorithm has reduced execution of this portion
of the program to take no time at all, the remaining portion of the program takes 30%
of the original time (i.e., 10% for input + 20% for output). Expressed as speedup, this
yields 3.33 since 3.33 × 30 = 100.

b) Super-linear speedup can occur where the parallel version an algorithm operates
better than N×, where N is the number of processing elements added. This situation
is unusual. One scenario in which this might occur is when the original data set is so
large than (slow) virtual memory is needed when running on one processing element.
Increasing the number of processing elements may mean that, because only a
fraction of the data is processed by each element, no virtual memory is required. This
can also happen when the data to be processed can all be held in (fast) cache
memory with the parallel implementation, but not in the serial implementation.

c) Scalability: This can refer to the ability of the algorithm to exploit additional
processing resources made available to it (e.g. increasing the number of processing
elements), or to continue to work is a predictable fashion as the volume of data to be
processed grows. Granularity: This refers to the ratio of computation to
communication. In fine-grain parallelism, individual tasks are small (in code size and
execution time). Data are transmitted to processing elements frequently. Conversely,
in coarse-grain parallelism, data is transmitted infrequently, and after much
computation. Fine granularity increases the potential for parallelism (thus speed-up),
but also increases synchronization and communication overheads.

d) Cluster Computing: involves a loosely coupled collection of computers, usually
appearing to the programmer as a single computing resource. Individual machines
are typically networked together. They are cheap, using commercial off-the-shelf
hardware, and (potentially) free software. They are resilient to failure: a fault on a
single processing element should not affect the ability of the virtual machine to
function. It is possible to use any standard network of computers to perform cluster
duties (e.g., overnight, or when idle), or two use a stack of dedicated networked PC,
such as in a Beowulf cluster.

Supercomputing: typically employs custom-built CPUs that operate faster than
conventional CPUs since they employ cutting edge designs that permit parallel
execution of instructions (among other things). Supercomputers are often designed
for specific computational tasks (such as numerical calculations), and may perform
considerable less well at more generalised tasks. Memory hierarchies are designed
to ensure the processor is continuously supplied with data and instructions (i.e., CPU
idle time is minimized). I/O systems provide high bandwidth to maximize the speed
that data can be moved around the system. Amdahl's law continues to apply:
supercomputer design attempts to eliminate the serial portion of programs (see
question a) as far as possible to maximize speedup. Where a multiple CPUs are
used, they are more tightly coupled than a cluster implementation, with increased
communication bandwidth and speed.

Examiner’s Guidance Notes

67% of candidates attempted this question, an achieved a mean of 11/25 marks.

Question 3

a) Briefly describe the role of NFS in a distributed system.

(5 marks)

b) Briefly describe the role of NIS in a distributed system.

(5 marks)

c) A colour videoconferencing application requires 3 bytes per pixel (RGB),
operates at a spatial resolution of 320×200 pixels, and a temporal resolution
of 10 frames per second. What are the data rate requirements for this item of
traffic if transmitted in a raw (uncompressed) format?

(5 marks)

d) What are the three quality-of-service (QoS) parameters? Explain how these

will be configured differently for videoconferencing application in contrast to a
file transfer application?

(10 marks)

Answer Pointers

a) NFS is an acronym for Network File System. It was developed by Sun
Microsystems, Inc, and is a client/server system, typically found in Unix/Linux, that
permits users to access files across a network and treat them as if they resided in a
local file directory. It is implemented by sharing directories on a server (i.e.,
exporting), and then mounting these directories on a local file system of a client onto
a specific mount point.

b) NIS is an acronym for Network Information System. NIS is the current name for
what was previously known as yp (yellow pages), and is typically found in Unix/Linux
systems. NIS allows individual machines on a networked computer system to share
configuration information, particularly password data.

c) The total sum of data requires for each second is video is simply the data required
for a single frame multiplied by the temporal resolution. This yields 3×320×200×10 =
9606000 bytes/s (9.6Mb)

d) Three applicable QoS parameters are bandwidth, latency and loss rate. For a file
transfer application, bandwidth and latency are do not need to have specific
minimums (though, clearly, higher bandwidth will decrease the amount of time taken
to transmit the file), but loss rate needs to be 0, since data loss cannot be tolerated in
the transmission of a file. For a videoconferencing application, bandwidth will need to
have a minimum tolerable level in order that the video stream is serviceable. Also, to
avoid delay/jitter, latency should be minimized. In videoconferencing, a non-zero loss
rate may be tolerated, since data corresponding to a particular video frame is only
useful in if that frame is still current to the client. Where data that has not already
been transmitted has been lost or is unlikely to be displayed at the client’s machine
because of its age, it can be abandoned.

Examiner’s Guidance Notes

41% of candidates attempted this question, achieving a mean of 8/25 marks. Most
candidates made a reasonable attempt at this question. The mean is dragged down
by one candidate (who scored poorly in all questions) scoring only 2 marks, and
would otherwise have been 9 (i.e., within the pass range, 40%).

Question 4

a) Briefly describe two methods of avoiding deadlock in a transaction and

concurrency control system.
(5 marks)

b) Describe the lost update problem?
(5 marks)

c) Briefly describe the central server mutex algorithm.

(5 marks)

d) Briefly describe the role of names in distributed systems, using three

examples to illustrate their usage.
(10 marks)

Answer Pointers

a)

1. Make it a requirement to release all locks held prior to switching contexts. For
example, change the code so that context of process A always performs its commit
before switching context to process B.

2. Make it a requirement that a given object may not be accessed from more than
one context at the same time. For example change the code so that both the update
and the select are done from the same context.

b) A lost update is a scenario in which two or more transactions update the same
data item (e.g. in a database), but neither transaction is aware of the modification
made by the other. Consequently the second change overwrites the first.

c) The simplest mutual exclusion algorithm: the central server grants permission to
enter a critical section of code. Processes send a request to the server, and await a
reply. A reply is accepted as a token that signifies permission to enter the critical
section. The server will reply with the token immediately if no other process currently
has the token. If another process does have the token, requests are queued. Once
the process has completed execution of the critical section, a message is sent to the
central server that signifies a return of the token for allocation to the next process in
the queue.

d) Names are used in a distributed system to refer to a variety of resources. Names
are needed to request a computer system to act upon a given resource chosen from
many to enable the sharing of processes and to enable users to identify themselves.
There are instances of names supplied in the form of addresses (physical network
addresses and local inter-network addresses), of identifiers (port, process or group
identifiers), of text (human-readable names), and of files (usually using human
readable text). For example, a textual file might look like this: /users/smith/prog.c , a
port or service-specific ID might look like this: 164997-9 , and a network
address might look like this: 2:60:8c:2:b0:5a

Examiner’s Guidance Notes

50% of candidates attempted this question, achieving a mean of 9/25 marks. The
mean is reduced by one candidate scoring 0, and would otherwise have been 11
(i.e., within the pass range, 44%).

Question 5

a) A parallel algorithm is to be implemented to perform a brute-force search for

prime numbers. Describe how data partitioning would be undertaken to
promote load balancing.

(7 marks)

b) We have implemented the algorithm above on a computer cluster. Sketch a
graph to show the expected performance (speedup) as the number of
processing elements is increased, assuming that the workload is held
constant.

(6 marks)

c) The efficiency of a parallel algorithm reflects how well it exploits the additional
processing elements made available (i.e., speedup ÷ number of processing
elements). Sketch a graph of expected efficiency as the number of processing
elements is increased.

(6 marks)

d) Suggest three guaranteed ways that the speed of the prime-search algorithm

could be improved.
(6 marks)

Answer Pointers

a) A brute force algorithm requires that each number in the range to be tested by
dividing it by all numbers less than itself to check for remainders. This leads to the
situation that lower numbers are faster to test than higher numbers, since there are
fewer numbers to divide by. To promote load balancing, it would be necessary to
supply an even workload to each processing element. This can be accomplished by
avoiding (the more obvious approach of) sending sequential blocks of numbers to
each processing element, but instead choosing a start point, and then an offset. For
example, assuming 4 PEs, for PE1 start at 1, and jump by 4 (1, 5, 9, 13…). For PE2,
start at 2 and jump by 4 (2, 6, 10, 14, …), for PE3, start at 3 and jump by 4 (3, 7, 11,
15, …), for PE4, start at 4 and jump by 4 (4, 8, 12, 16, …). This way, each process
has an even share of high and low numbers to test, and computation is relatively
equalized.

b) With speedup on the y axis, and processing elements on the x axis, speedup will
initially increase from 1 (the original speed) upwards as the number of processing
elements increases, but then fall as additional processing elements are added
beyond an optimum. This will occur because, since the workload is held constant,
one cannot add additional resources indefinitely and expect speed to improve. In an
algorithm that shares the workload equally among the PEs, the effort of dividing,
distributing and re-assembling the data will begin to outweigh the benefit of adding
more computational resources, ultimately slowing the performance.

c) Efficiency is speedup(PE)/PE. The efficiency graph will reflect sub-linear but
positive speedup <1 early on (i.e. utilization of the additional computing resources,
but speedup for N resources will be <N times), followed by lower efficiency later on
as additional resources are progressively less well exploited. It is possible to include
negative efficiency, e.g., if speedup is -2 (i.e., the parallel version runs slower than
the serial version, because of the issues outlined above, using 10 PE, then efficiency
is -2/10 = -0.2).

d) Three guaranteed ways are i. increase the power of the processing elements (e.g.
upgrade CPUs), ii., increase the efficiency of the algorithm (e.g. replace the brute
force algorithm by the sieve of Eratosthenes), iii. increase the speed of the
communication medium connecting the processing elements. Note that increasing
the number of hosts does not guarantee an increase in speed (because of the issues
outlined above).

Examiner’s Guidance Notes

A very small number of candidates attempted this question (only 17%), and those
that did achieved low marks (a mean of just 4/25 marks). This question required
candidates to apply their learning to a specific case study, and would have required
some degree of lateral thinking rather than being answerable from memorized
bookwork.

Since a proportion of the course is dedicated to parallel systems, such poor
performance on quite a fundamental question in parallel computing is worrisome.

Question 6

For a job interview, you have been asked to make a 30 minute presentation on the
following topic:

Security in Distributed Systems: How is it accomplished?

Sketch out approximately 8 content-rich presentation slides, with associated notes,
that you would use for your talk.

Please note: your answer will be assessed for its quality of approach, accuracy of
content, clarity of expression, range of discussion, and depth of argument.

(25 marks)

Answer Pointers

This question format is used regularly in the distributed & parallel systems exam. On
this occasion, the topic was security in distributed systems. The candidate would be
expected to spend approx. 5 minutes on each slide, and to ensure that they are
succinct, factual and informative. Credit is given for identifying relevant issues,
illustrating these thoughtfully (with both words and diagrams), and having a logical
structure to the presentation that leads the reader through the topics in a sensible
manner.

Examiner’s Guidance Notes

83% of candidates attempted this question, and it accrued the highest mean of any
question at 15/25 marks. Some students assembled a larger number of less
informative slides, and were only able to identify a small number of relevant topics.
Selection of a suitable number of relevant topics, and a clear, detailed presentation of
information within or near to the requested number of slides lead to the highest
marks.

