THE BRITISH COMPUTER SOCIETY

THE BCS PROFESSIONAL EXAMINATION Professional Graduate Diploma

COMPUTER GRAPHICS

8th May 2001 – 2.30 p.m. – 5.30 p.m. Answer THREE questions out of FIVE. All questions carry equal marks. Time: THREE hours.

The marks given in brackets are **indicative** of the weight given to each part of the question.

a) Most colour graphics display devices permit only a small subset of the colours in a palette to be displayed. 1.

i)

- Why is this? ii) Explain how a Colour Look-Up Table (CLUT) can be used to relate the displayable colour set to the
- palette colour set. (6 marks) *iii)* A device is required to display up to 100 colours from a palette of 4000 colours. How small can the
- CLUT be made? (6 marks)
- Explain how colour is physically produced on a raster graphics screen. You should make reference to *b*) electron guns, triads and shadow masks in your answer. (10 marks)

2.	<i>a</i>)	Describe the three key characteristics which can be determined from a light energy spectrum.	(6 marks)
	b)	What is a colour gamut? From what limitation do all colour gamuts suffer in practice?	(4 marks)
	c)	A colour is defined as (0.9, 0.4, 0.4) in the RGB model. What are its components in the CMYK r	model? (4 marks)
	d)	Briefly describe the three main components in Phong's illumination model.	(6 marks)

What additional light sources can be added to Phong's model to improve visual realism and how can they be e) taken into account? (5 marks)

3. A drawing package requires the implementation of scan conversion algorithms to display primitive shapes. [Note: your answers to each section of this question should identify any limitations of algorithms. Implementations can be given in your preferred programming language. Assume that you have been provided with a function write(x, y) for displaying a point on the screen.]

- a) Describe the mid-point line algorithm for scan converting straight lines between the points (x1, y1) and (x2, y2), giving any restrictions which the algorithm places on the end points. (13 marks)
- b) Describe how the algorithm can be extended to scan convert lines between all possible choices of end points. (12 marks)

(3 marks)

- **4.** A three-dimensional graphics package makes use of a number of transformations to manipulate primitive shapes. In each of the following, draw a diagram to show the effects of the transformations in question and derive the transformation matrix.
 - a) Give the matrices for a rotation of angle θ about the x-axis and for a rotation of angle φ about the y-axis.
 Multiply the matrices together to give a composite rotation matrix. (9 marks)
 - b) An arbitrary unit direction vector U = (u1, u2, u3) can be rotated into the positive z-axis by applying a rotation about the y-axis followed by a rotation about the x-axis. By multiplying the composite matrix derived in part *a*) by the vector U, and equating it with a unit vector along the positive z-axis, generate three equations in θ and φ , the solutions of which define the composite rotation matrix from U onto the positive z-axis. (5 marks)
 - c) Solve the three equations to give the sines and cosines of θ and φ in terms of u1, u2 and u3. (11 marks)
- 5. A drawing package needs to be able to define and efficiently display Bézier curves. Your answers to each section should include a diagram where appropriate.

<i>a</i>)	Describe the Bézier form of the cubic polynomial curve segment.	(4 marks)
b)	Describe the iterative evaluation method for displaying a parametric cubic and identify the number multiplications and additions required for each point.	er of (6 marks)
c)	Show how forward differences can be used to reduce the number of calculations and identify how multiplications and additions are required for each point.	many (7 marks)
d)	Describe the recursive sub-division method for displaying a parametric cubic.	(6 marks)
e)	Give a suitable flatness test for a Bézier curve segment undergoing recursive sub-division.	(2 marks)