THE BCS PROFESSIONAL EXAMINATION
Professional Graduate Diploma

April 2001
EXAMINERS' REPORT

Advanced Database Management Systems

QUESTION ONE.

One of the problems in distributed database system management is deadlock detection.

Consider the following strategy for building a wait-for graph in a centralised system.

If transaction Ti is waiting for a data item held by Tj , make Ti and Tj nodes in the
wait-for graph and draw an edge from Ti to Tj

Explain why deadlock detection is a problem in distributed systems.
(5 marks)

Explain how the strategy stated above can be used to detect deadlock in centralised
systems.
(4 marks)

State why the given strategy is not suitable for distributed systems and discuss how

it might be amended and used to detect deadlock in such systems. Provide outline

algorithms for deadlock detection for two distributed database system topologies.
(16 marks)

Answer Pointers

a)

b)

Problem because of no centralised system to oversee which transactions are waiting for
which data. A local site would know only that a global transaction is slow in completing or
waiting for data. Would not know that deadlock had occurred because would be unaware
of what is happening at other sites.

(5 marks)

The system draws a graph to include all waiting transactions. If there is a cycle in the
graph it means that two transactions are (either directly or indirectly) waiting for each other.
Hence deadlock has occurred.

(4 marks)

It is not suitable for distributed systems because a local site which initiates the transaction
would know only that a transaction is waiting for data held at another site. It would not
know that what relationships exist between transactions at other sites and how these might
effect this transaction.



Would need more information to be held on the local wait-for graphs and a mechanism for
combining local graphs to get a global picture.

The local graphs might be extended to show what local data is held by each transaction
active at the site and also what data has been requested for other sites.

Need a global deadlock detection strategy. The strategy will involve combining local
graphs.

(6 marks)

For instance, in a ring network:
If a local site suspects deadlock it send its graph to next site on the ring.
repeat until return to local initiating site or deadlock detected
The receiving site combines the graph received with its own

If there is a cycle therein, deadlock has been detected, the graph is sent to sites
involved and transactions involved are rolled back.

If there is no cycle, the receiving site sends the combined graph to the next site
on the ring.

If no deadlock has been detected the original site continues as normal
In a tree network:
If alocal site suspects deadlock

it requests the wait-for graphs for each of its descendents
it combines these
if deadlock is not detected
repeat until deadlock detected or global graph constructed

send graph to parent

parent requests graphs from each of its descendent

parent combines these
if deadlock detected roll back transactions

(10 marks - 5 marks for each topology)

Examiners Guidance Notes

The first two parts of this question were answered reasonably well. Some candidates strayed off
track in the third part. A common mistake was a discussion of methods of deadlock prevention
rather than algorithms for deadlock detection.



QUESTION TWO.

It is usually worth a database management system expending considerable effort in
determining the best method of executing a query before actually executing the query.
Discuss the role and process of query optimisation in database management systems.

(25 marks)

Answer Pointers

This question is about query optimisation. As there are usually many ways to execute a given
user query and some methods are far more expensive than others in processing terms, it is
usually worth any DBMS having a query optimisation subsystem.

Candidates should describe the process of query optimisation and execution and should give
examples of how alternative strategies can greatly affect the number of disk accesses (usually the
main bottleneck) in executing a particular query.

Points around which discussion/ illustration could be based:

e Converting a user query (e.g. SQL) into an internal representation (e.g. relational algebra).
Equivalence of expressions. Implied processing patterns.

o Keeping statistics in order to determine size of various results obtained during the processing
of a query.

e Use of indexes to speed up query processing. Making use of blocks and physical ordering.
Sorting

¢ Joins are the most expensive operation. Making use of different join strategies.

o Parallel processing. Disk stripping.

Marks Breakdown:
Basic knowledge of role and stages of optimisation 5
Equivalence of expressions in SQL and internal query representation 4
Use of statistics 4
File organisation and indexes 4
Algorithms 4
Parallel Processing Approaches 4

Examiners Guidance Notes
A common mistake in this question was for candidates to assume the context of a distributed

system. Many answers given assumed only distributed systems. This was not the intention of the
guestion. Optimisation applies to both centralised and distributed systems.



QUESTION THREE.

Explain how one might judge whether a database management system was based on the
relational database model.
(25 marks)

Answer Pointers

There are a number of possible approaches to answering this question. Candidates could choose
to quote Codd's twelve rules with adequate explanation. A better answer might be to define what
is meant by a relation, define the three main integrity constraints: domain, entity and referential
integrity, and outline the necessary relational algebra operations.

Examiners Guidance Notes

A popular question, which in general was answered well. Many candidates were able to quote
Codd’s twelve rules but few were able to explain them. In general the clearer answers were those
that followed the second approach outlined in the answer pointers.

QUESTION FOUR.

Discuss the features that should be supported by a temporal database management
system.
(25 marks)

Answer Pointers

The answer to this question depends on which temporal database paradigm you follow. One
answer might be:

Support for intervals and points

Scalar operators including BEFORE, MEETS, OVERLAPS, DURING, STARTS, FINISHES
Possibly MERGES, CONTAINS

Aggregate operators: UNFOLD and COALESCE

Examiners Guidance Notes:

Not a popular question, suggesting that this is not a topic that appears on many courses. Most of
the answers submitted did not receive any credit because candidates had read temporary instead
of temporal. Most candidates who did read the question correctly and chose to answer it,
submitted answers similar to the outline given above.



QUESTION FIVE.

Compare and contrast features and origins of object-oriented versus object-relational
database systems.
(25 marks)

Answer Pointers

From a user perspective the technologies are converging. Object-oriented database systems
came mainly from the software engineering field, although database researchers were also
working towards database models more capable of representing complex data items and
processes. The software engineering community developed abstract data types. It was
recognised that persistence was needed within application areas that used complex types and
hence object-oriented databases came about. A sector of the database community, which did not
want to lose the investment made in relational systems, developed the object -relational approach
as an extension of the relational approach. Thus a relational model can be used with object-
oriented extensions where needed.

The concept of object-relational captures relational as well as relational plus objects. Object-
Relational databases are an evolution of relational databases. They allow the expression of most
OODBMS concepts. The data model used by ORDBMSs is also called the SQL-3 Data Model as it
is defined by the Data Definition Language (DDL) of SQL-3.1t is compatible with the relational
model as defined by SQL-2. The query language SQL-3 is compatible with SQL-2. Thus standard
relational queries can be expressed. New features include: complex types, dereferencing ; double
dot notation; nesting and unnesting.

Third generation DBMSs should have the following characteristics according to the object-
relational ‘'manifesto’:
¢ Rich Type System
Generalisation Hierarchies
Functions (including procedures and methods) are useful
System should allocate OIDs if a primary key is not available
Active rules and passive rules will become an essential component of third generation
DBMSs
e SQL is the reference language for DBMSs

Object-oriented databases should have the following properties according to the object-oriented
manifesto
¢ Overriding, overloading and Late Binding
Computational Completeness
Extensibility
Durability
Efficiency
Concurrency
Structural Complexity
Object Identity
Encapsulation
Types and/or Classes
Class and/or Type Hierarchies
Reliability



e Declarativeness — i.e. high level languages

Some further optional characteristics are

Multiple inheritance

Type-checking at compilation time

Data distribution

Management of long or embedded transactions

The Object Database Management Group is a committee in which the main constructors of
OODBMSs are represented. The committee was brought together in the late 80s. It has proposed
a data model with a definition language (ODL), a query language (OQL) and mechanisms for the
definitions of methods in languages such as C++ and Smalltalk. OQL looks like SQL.

From a user's perspective common features of both approaches are the support for complex
object types i.e. object classes can be stored within object classes or relations can be stored within
relations, operations or procedures can be associated with objects or relations, type and class
hierarchies can be defined. Main difference between the approaches is the underlying relational
technology in object-relational systems, lack of compulsion for object identifier in object-relational
systems and possibility to merge relational with object-relational in object-relational systems.
Downside of object-relational systems is that they might be less efficient because of the
differences just mentioned. Upside is that ad hoc querying and links to predicate logic based
systems are supported better. Object-oriented systems might be seen more as programmers tools
for specialised systems whereas object-relational might be seen as a more generalised approach.

Marks Breakdown :

Origins 5 marks
Features 12 marks
Comparison 8 marks

(25 marks)

Examiners Guidance Notes

A common problem in this question was that a number of candidates did not seem to know what is
meant by an object-relational system. The object-oriented system seemed to be understood quite
well but not object-relational. In fact some candidates compared object-oriented with relational
rather than object-relational and lost a lot of marks in the process.



