
W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
1 (of 11)

THE BCS PROFESSIONAL EXAMINATION
Diploma

April 2003

EXAMINERS’ REPORT

Software Development Environments

General

• It is necessary for the examiner to be able to read your answer. Try to write legibly.

In many cases writing less, but more clearly, would gain more marks.

• Candidates should answer the question posed. There was a strong tendency to

simply identify key words in the questions and then regurgitate large quantities of
textbook material on these topics rather than applying this knowledge to the
question asked. Much if what was written by many candidates was simply irrelevant
to the question, even if accurate.

QUESTION ONE

This question examines section 1 of the syllabus, “The Software Development
Lifecycle”.

A requirements analysis document contains the following, “After throwing five
dice, decide whether all of them show a different number”.

By using this requirements statement, demonstrate your understanding of the
principle constructive steps of the traditional lifecycle process by providing

(i) a specification, (7 marks)
(ii) a design and (8 marks)
(iii) coding. (10 marks)

You may use whatever notations and languages you feel appropriate.

Answer Pointers

The question is designed to see if the candidate can write actual examples of
specification, design and code for a specific example and make them look different.

(a) specification - example
if the five dice values are d1,d2,d3,d4,d5 then the specification of exactly four numbers
are the same could be expressed by gathering the five numbers into a set and then
checking whether the size of the set is 5

|{d1,d2,d3,d4,d5}|=5

(b) design - example

• store counts of numbers in array with subscripts 1 to 6,
• initialise elements to zero,
• record occurrences of each number in array as they are read.
• At end go through array, increasing variable size by one for every non-zero

entry.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
2 (of 11)

• Look to see if size is 5

 (c) code - example

for(i=1;i<=6;i++) /*initialize a 6 element array*/
 count[i]=0;
for(d=0;d<5;d++){ /*read in 5 dice values, saving information in array*/
 scanf("%d",&v);
 count[v]++; /*e.g. if dice value is 4 then count[4] is increased by 1*/
}
size=0;
for(i=1;i<=6;i++) /*go through array counting non-zero entries*/
 if(count[i]>0)
 size++;
if(size==5) /*the size of the ‘set’ (see specification)*/
 printf("all different");
else
 printf("not all different ");

Mark Breakdown
(a) 7 marks – for specification, something that is a statement of the problem with no

hint of data structures to be used or algorithmic detail
(b) 8 marks – for design, something that gives some idea of variables, data

structures, together with an overview of the algorithm
(c) 10 marks – for final code, in some language, capable of reading five numbers

and printing different messages depending on whether the numbers are all
different

This question was misunderstood by many students. The question provides a scenario
(a requirements statement) concerning dice and invites the student to write an actual
specification, design and corresponding code.

Many answers just contained general descriptions of three stages of the software
development life cycle without ever mentioning the word dice.

QUESTION TWO

This question examines section 2 of the syllabus, “The Programming Environment”

(a) Many text editors have global search and replace facilities. Describe a

programming situation where this facility might be used to good effect.
(4 marks)

(b) Instead of exact matches, many systems allow pattern matching. In this case

the search is based on a pattern (or regular expression) using special
characters e.g. ‘.’, ‘?’, ‘*’, ‘+’, ‘[]’, ‘\’. For a system that you are familiar with,
list the special characters and explain the effect of these special characters in
patterns. (12 marks)

(c) Use your special characters to make patterns (regular expressions) that

match
(i) any integer (any sequence of decimal digits)
(ii) any variable name (any letter, optionally followed by letters and digits)
(iii) any jpeg file name inside double quotes, e.g. "image.jpg"

(9 marks)

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
3 (of 11)

Answer Pointers

This question is based on regular expressions which are found in editors, programming
languages, command languages and operating systems.

(a) global search & replace can be used to systematically change an identifier (of a
variable, procedure, ...) if, for example, a naming convention has inadvertently been
overlooked

(b) meaning of special characters in patterns
. matches any character
x? matches x optionally
x* matches any number of x's including none
x+ matches any number of x's (at least 1)
[x-z] matches any character between x and z inclusive
\x turns off the special effect of x

(c) patterns to match…
any integer [0-9]+
 the pattern consists of

any digit from 0 to 9,
occuring at least once

any variable name [a-zA-Z][a-zA-Z0-9]*
 the pattern consists of
 any letter, lower or upper case
 followed by any alphanumeric character
 occurring zero or more times
any jpeg filename in quotes ".+\.jpg"
 the pattern consists of
 a double quote character
 any character
 occurring at least once
 followed by an actual full-stop
 followed by the letters j, p, g
 followed by a double quote character

Mark Breakdown
(a) 4 marks for a reasonable example
(b) 2 marks for each explanation of a pattern character, total 12
(c) 3 marks for each required pattern, total 9

Some students misunderstood the question and wrote answers describing where “.”, “*”,
were used in general programming languages (decimal point in numbers, multiplication
symbol). Those students who understood that the question was about regular
expression notation obtained good marks.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
4 (of 11)

QUESTION THREE

This question examines section 3 of the syllabus “Program Design”

(a) Construct a design which is structured using a combination of

modularisation, sequencing, selection and iteration for the program which is
described below. The design can be in any notation, diagrammatic or text, but
your answer must be clearly labelled to show the type of structures used in
each part.

(18 marks)

The program: “Read in 10 positive numbers, noting the maximum value, and
then go through all the numbers and for each one print ‘+’ if it is greater than
half the maximum and ‘-‘ otherwise.”

(b) Describe the syntax used to provide modularisation, sequence, selection and

iteration in a programming language of your choice. [If your chosen language
has more than one syntax for a particular control mechanism then you only
need to describe one].

(7 marks)

Answer Pointers

The question tests whether the candidate can demonstrate the use of structuring by
modularisation, sequencing, selection and iteration in a simple example.

(a) Expect diagrammatic answers (flowcharts?)

Module 'HalfMax' broken down into
 sequence of submodule 'Read10SetMax'
 followed by submodule 'MoreThanHalf'

'Read10SetMax' module broken down into
 sequence of set max to 0
 followed by iteration
 iteration over i from 1 to 10
 sequence read next number into n
 followed by set a[i] to n
 followed by selection
 selection if n>max, set max to n

'MoreThanHalf' module broken down into
 iteration over i from 1 to 10
 selection if a[i] > max/2, print '+',
 otherwise print '-'

(b) syntax for design structures, in C
modularisation via functions
declaration:

fn_type fun_ident (formal_parameters){ body }
call:

fun_ident (actual_parameters)

sequencing - no special token - just juxtaposition

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
5 (of 11)

selection: if(exp)stmt or if(exp)stmt else stmt or switch(exp){...}

iteration: while(exp)stmt or do stmt while(exp) or for(...){...}

Mark Breakdown
(a) For a design that breaks program down into 2 (or more) modules to be run in

sequence – 6 marks.
For the design of the sequencing, selection, repetition of each of two modules -
6 marks each.
Total 18

(b) Two marks for the syntax of modularization, selection, sequencing structures,
one mark for sequencing, total 7 marks

In part (a) the design of a program to read in 10 numbers and print out the messages
was reasonably done. A few students tried to achieve everything inside one loop when
clearly two loops, one after the other are required.

Most marks were lost by not “clearly labeling the structures used”, i.e. drawing attention
to where modularization, sequencing, selection and repetition were used.

For part (b) examples of the structures did not gain as many marks as syntax, e.g.
 if (<expression>) <statement>
is worth more than
 if (x>1) s++;

QUESTION FOUR

This question examines Section 4 of the syllabus, “Program Development
Environments.”

(a) Describe the facilities available within a program development environment

with which you are familiar that would facilitate the implementation of a large
system by a team of programmers.

(5 Marks)

(b) Discuss FIVE features often found in program development environments that

assist individual programmers to develop code.
(10 Marks)

(c) Errors are often evident when modules written by individual programmers are

brought together to form the complete system. Indicate how the use of a
debugger can assist in the process of identifying the location of these errors.

(10 Marks)

Answer Pointers

(a) Code can be split across files (different modules), each of which can be

individually edited and then compiled to validate syntax. All modules that form a
complete system can be linked together under a “Project”. When the project is
“built” only those modules that have changed since the last compile are re-
compiled, then the linker forms the final system.

 Tools, for example, to assist version control, locking of modules being worked

on by other developers and central data dictionaries are often provided.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
6 (of 11)

Some candidates discussed environmental issues, such as adequate air
conditioning, each developer having their own computer, or other external
factors including briefing meetings and good teamwork skills. However, these
are not provided by program development environment and hence could not be
considered as valid answers to the question.

(b) Examples include (but are not restricted to):

Auto completion of code
For example, when a programmer types the first few characters of a keyword,
the environment completes the rest

Automatic indentation
Body of functions, loops etc indented according to predefined rules.

Colour Coding
Highlights keywords, comments etc and helps identify typographical errors such
as spelling or missing closing comment token.

Syntax Directed Editing
Automatic insertion of closing tokens when opening token entered (e.g.
BEGIN/END combinations).

Context Sensitive Language help
Provides help on the keyword/function under the cursor, e.g. indicating the
nature of parameters required for a function.

In general this part of the question was well answered.

(c) Candidates were expected to discuss the use of he following features.

Break points
User defined locations at which the debugger will pause execution of the code
until further instructions are given.

Watches/Inspectors
Display the contents of a variable or a more complex expression when the
program is paused at a break point.

Changing variable contents
Allows the content of a variable to be modified during the execution of the code.

Stepping into/through code
Allows the code to be executed statement by statement. Statements that
represent calls to other functions and/or procedures can either be considered as
a single statement (step through) or as a group of separate statements that get
executed individually (step into).

Call stack
Presents information as to which functions/procedures have invoked other
procedures.

Again, in general, this part of the question was well answered.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
7 (of 11)

Mark Breakdown
(a) 1 mark for each point made, up to a maximum of 5 marks.
(b) 1 mark for each feature identified, 1 for associated description up to a maximum

of 10 marks.
(c) 1 mark for each feature identified plus 1 for its description, maximum 10 marks.

QUESTION FIVE

This question examines Section 5 of the syllabus, “Program Testing”.

(a) Compare and contrast TWO structured testing methods with which you are

familiar, highlighting the advantages and disadvantages of each.
(12 Marks)

(b) Using a method with which you are familiar, list a suitable set of test cases for

the pseudo-code below. Candidates should also clearly explain how the test
cases were derived.

Read values of x, y, a and b
if (x>y) then
 if (a<b) then
 c=0
 else
 c=99
else
 if (x==y) then
 c=50
 else
 c=25
Print c

(8 Marks)

(c) Identify the advantages and disadvantages of a testing tool with which you

are familiar. Provide an example of where it would be appropriate to use the
tool.

(5 Marks)

Answer Pointers

(a) Candidates should discuss, for example, top-down versus bottom-up testing or

black versus white box testing. The following sample solution is indicative of the
detailed required.

Black Box
Testing is based on the requirements specification and without reference to the
actual code. Test cases are selected to ensure that all of the requirements are
achieved in that particular inputs generate the required output or anticipated
response.

Advantages
• Testing can be conducted by the end user
• Tester and programmer are independent
• Will help to expose any ambiguities or inconsistencies in the specifications
• Test cases can be developed as soon as the specification is complete

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
8 (of 11)

Disadvantages
• Cannot ensure that all sections of the code have been tested.
• Certain types of error may not be detected, e.g. two errors that combine to

cancel each other out.
• Cannot be directed toward specific segments of code which may be very

complex (and therefore more error prone)

White Box
Testing is based on the actual code. Test cases are selected to ensure each
path (i.e. each branch of a conditional statement) is executed at least once.

Advantages
• Each individual line of code will be tested at least once.
• Beneficial “side effects” often arise, e.g. code optimisation
• Will detect a wide range of errors
• Can be focussed on specific areas of the code, e.g. areas containing

complex logic and thus more likely to contain errors

Disadvantages
• Testing does not ensure program satisfies the requirements (It will miss

requirements missed in the code)
• Test cases must be developed by a skilled employee with knowledge of

computer programming
• Test plans cannot be developed until the code is complete

In general this part of the question was well answered.

(b) Any technique is acceptable, solution below uses equivalence partitioning:

Step 1 - Divide all possible inputs into classes that produce similar actions within
the program. Classes for given code:

(i) Enter values of x > y and a < b
(ii) Enter values of x > y and a >= b
(iii) Enter values of x = y, any value for a and b
(iv) Enter values of x < y, any value for a and b

Step 2 – Identify any additional boundary cases

(v) Enter values of x > y and a = b

Step 3 - Select 1 test from each class
Possible values:
 x y a b

(i) 4 3 2 5
(ii) 4 3 5 2
(iii) 5 5 1 1
(iv) 3 5 3 2
(v) 4 3 1 1

Most candidates were able to identify the majority of the test cases required, but
few “clearly explain[ed] how the test cases were derived”.

(c) Any testing tool is permitted; solution below is for a simulator:

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
9 (of 11)

Typical Use
• Safety critical software or where damage to associated hardware could

be very expensive.

Advantages
• Can be more cost effective if interfacing hardware is expensive
• Errors in the software do not invoke catastrophic events

Disadvantages
• Could be errors in the simulator
• Difficult to test functions that are dependant on timing

Many candidates failed to “Provide an example of where it would be appropriate
to use the tool”, but otherwise the question was, in general, well answered.

Mark Breakdown
(a) 2 marks for a description of each technique and 4 for its respective advantages

and disadvantages (1 mark for each advantage/disadvantage identified up to a
maximum of 4).

(b) 5 marks for the actual test cases, 3 for the description of their derivation.
(c) 1 mark for a typical use of the tool, 2 marks for advantages and 2 for

disadvantages.

QUESTION SIX

This question examines Section 6 of the syllabus, “Quality Assurance and
Documentation”.

(a) Identify FIVE factors used to indicate the quality of software. For each factor,

indicate what would be considered “high quality”.
(10 Marks)

(b) Standards can be used to ensure consistency of the code produced by

different programmers. Describe how a coding standard with which you are
familiar addresses the following aspects:

(i) Naming of identifiers
(ii) The use of comments
(iii) Indentation

(6 Marks)

(c) Most commercial software gets modified frequently after the initial

development phase. Describe how the process of deciding which requests
for changes should be implemented could be managed within an organisation
that receives many requests for such updates.

(9 Marks)

Answer Pointers

(a) Any five quality measures are acceptable, for example:

Usability
Good “usability” implies software that conforms to standard HCI guidelines.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
10 (of 11)

Maintainability
Software is maintainable if it is well documented (both in the code through
comments and through supporting external documentation) and, where different
alternative algorithms were available, the simplest chosen.

Reliability
Software is reliable if it always produces the correct results.

Robustness
Software is robust if it handles error situations in a controlled manner (e.g.
invalid inputs)

Efficiency
Software is efficient if it uses as little memory as possible and secondly if it uses
the smallest number of processor cycles possible.

In general, this part of the question was well answered.

(b) The answers below are indicative and not the only possible solution.

Naming of identifiers
• The initial characters of the identifier should indicate its type (e.g. “int” for

integer, “str” for string etc.)
• Each “word” within a name should commence with a capital letter, all

other letters should be in lower case, e.g.intCountOfApples.

The use of comments

• Each module should have a comment block at the start indicating the
name of the module, the original author, a description of what the
module does and a list of changes to track different versions. Changes
should be tagged with the date and author making the change.

• All variable names should have a comment indicating their use.

Indentation

• Position of tab stops should be every 3 spaces
• Specific rules should be defined for each syntactic structure

Many candidates struggled with this question with many concentrating on the
benefits of having naming conventions, good commenting standards and
indentation rather than “describing” a coding standard for each factor.

(c) The solution below is indicative of the sort of answer required and is not the only

possible one.

Requests for changes should be submitted on a standard form to include the
following information:

• Name and contact details of person making the request
• Date of request submission
• A checkbox indicating whether the request relates to an error in the

existing software or a request for additional functionality
• A description of the requested change

Bug fixes go to the support/maintenance team

• A check is made to see if the bug has previously been reported. If so,
the additional report form is filed with the others already received.

W:\New Site\content\VERSION3\qualifications\exam\examiner\apr03\dipsde.doc
11 (of 11)

• New bugs are allocated a priority level (say 1-5) depending on (for
example) the severity of the problem, the number of customers
impacted, the time required to fix the fault etc. If additional forms are
received reporting the same bug, the priority may be changed.

Requests for new functionality go to the development team

• Again a check is made to see if the same or similar request has been
made previously and if so, the form filed with the previous ones.

• Again each form is allocated a priority level depending on (for example)
the number of customers likely to benefit from the new functionality, the
amount of time required to implement the new feature. Additional forms
requesting the same change may alter the priority assigned.

Forms are filed based on the module or area of the program’s functionality that
is impacted.

Issues with the highest priority are implemented first.

However, need to ensure that request with low priority are not permanently
ignored (particularly bug fixes) and hence the length of time in the “queue” may
increase the priority of a request.

This part of the question was poorly answered, with many candidates not even
attempting an answer. Candidates should expect questions that require them to
apply their knowledge to practical applications of software engineering and not
just rote learn material.

Mark Breakdown
(a) 1 mark for each measure, 1 for description of high quality, maximum 10 marks.
(b) 2 marks each for identifier naming conventions, commenting style and

indentation.
(c) 1 mark for each point identified.

