
1 (of 10)

THE BCS PROFESSIONAL EXAMINATION
Diploma

April 2004

EXAMINERS’ REPORT

Object Oriented Programming

Important
This syllabus will be examined for the last time in April 2005 as it is being replaced by the Version
2 syllabus.

Question 1
1. A University's library stores various items that can be borrowed, including books and journals. Both staff and

students can borrow books, but only staff members can borrow journals. Students can borrow up to a maximum
of 5 books and staff can borrow up to a maximum of 10 books and 3 journals. Books can be borrowed for two
weeks and journals one week. If the borrower keeps the book or journal longer than this, they are subjected to a
fine, which is increased daily.

When a user borrows a book, they provide their libraryId, if this is valid their loan details are checked to ensure
that they have not already borrowed above the maximum permitted number of books. They will not be allowed to
borrow above the maximum number. A check is also made to see if they have any fines. If they have a fine, then
they cannot borrow any items until the fine is paid. If all the checks are ok, then the item is issued to the user and
the return date is assigned to the loan. At this point the user can optionally ask for a printout, which summarises
all of the items they have on loan and when each item is due back.

Users can check their own loan details at any time. Librarians are permitted to check the loan details of
any user.
Library users can reserve books that are currently out on loan. Journals can not be reserved. If three reservations
have already been made for a given book, and a further reservation is made, a new copy will be ordered by the
librarian.

 a) Draw a use case diagram for the library system. (15 marks)

 b) Write down a use case description of the way a user borrows a book. Your answer should include a normal

sequence and three alternative sequences. (10 marks)

2 (of 10)

Answer Pointers

 This question examines part 4 of the syllabus: Practice
(a) Library System

User (Student)

Staff

Librarian

Loan Books

Loans Journals

CheckForFine

«uses»

«uses»

CheckMaxLimit

«uses»

«uses»

CheckAnyLoan

«extends»

CheckOwnLoans

ReserveBook

OrderNewBook

Print Loan Summary

«extends»

«extends»

15 marks

1 per use
case

1 per
actor

1 for the
uses

1 for Print
extends

1 for Staff
extends

(b) Actor Action System Response

1. User requests to borrow a book 2. Check libaryId is valid
 and provides libraryId. 3. Check whether staff or student

4. Check user has not exceeded
their maximum limit

 5. Check user has no fines

 6. If ok, book is loaned to user and
 return date allocated

Alternative sequences

Step 2. Invalid card, loan refused.

Step 4. User has exceeded limit, loan refused.

Step 5. User has fine, loan refused.

Step 7. Request printout of loans

10 marks

1 per
step

3 (of 10)

Examiners’ Comments
A popular question and on the whole a reasonable attempt was made of part a). Most candidates
correctly identified the basic use cases, but not many saw the potential for the extends and uses
relationships. Many candidates also omitted the Librarian actor and few identified that a Staff actor
could be a subtype of the general (Student) user.

In some cases the use cases were correctly identified, but the relationships between them were
wrongly connected, missing or in some cases, each use case was connected to every other one.

Part b) was generally answered well, a few candidates provided the normal sequence only, or only
one sequence rather than three.

2. a) Carefully explain the occasions on which you would use the following:
 i) a constant instance variable (or field)

 ii) a class variable (or field)
 iii) a class method (or operation)
 iv) a concrete class
 v) an abstract class (10 marks)

 b) A lending library holds a large number of publications that may be books or journals. Both are given a title
e.g. “Object-Oriented Programming” and a unique reference number e.g. 123. The reference number is not
expected to change. In addition each book also has an author e.g. “John Smith” and an international
standard book number e.g. 0-13-12344567-8. Each journal also has a date of publication e.g. 15-12-2003
and the name of its editor. Finally all publications in the library need to hold the name of the library they are
in e.g. “City Library”.

Using an object-oriented programming language of your choice, provide sample code that demonstrates the
use of the five concepts in part a) above when implementing the lending library scenario. (15 marks)

Answer Pointers

 This question examines Parts 2 and 4 of the syllabus “Concepts”

and “Practice”

(a) A constant instance variable is used to hold an object’s
unchanging data. It is given a value once and once only. The
compiler will normally prevent changes.

A class variable is used to hold data common to all instances of
the class. Only one class variable is created per class
regardless of the number of objects of the class that are created.

A class operation is used to manipulate a class variable. It is
illegal for a normal operation to do so. The class operation is
normally invoked through the class name. Class operations
cannot access instances variables as they cannot be assumed
to exist.

A concrete class is used to represent objects that correspond to
real objects. It is the default for a class.

An abstract class is used to represent the common protocol (and
possibly common implementation) of subclasses. It is expected
to have abstract methods. It is illegal to create an object of this
kind of class. However we may declare a reference to it.

2 marks

2 marks

2 marks

2 marks

2 marks

4 (of 10)

(b) abstract public class Publication {
 private final int theReferenceNumber;
 private String theTitle;
 //
 private static String theLibraryName;
 public static int getLibraryName() { return theLibraryName; }
 // …
}

public class Book extends Publication {
 private String theAuthor;
 // …
}

public class Book extends Publication {
 private String theDateOfPublication;
 private String theEditor;
 // …
}

Code fragments such as:

 Publication publication = new Book(…);
 Publication.getLibraryName();

3 marks for each concept illustrated

15
marks

Examiners’ Comments
Generally a lot of candidates only attempted part a) and not part b). Out of part a, the candidates
mostly answered parts i)-iii) correctly, but gave hazy definitions to parts iv) and v), some mixing up
abstract data types with abstract classes.

Few attempted part b), out of those that did, again not many could distinguish between abstract
and concrete classes; some had problems defining a class variable too. Java, and C++ were the
most common languages used, with a few instances of VB.net.

5 (of 10)

Question 3
3. a) Describe in detail TWO design patterns with which you are familiar. Your answer should include the

circumstances in which they are applicable, when they can be applied and trade-offs when using them within
a larger design. (16 marks)

 b) The following class diagram includes the classes Aaaa and Bbbb in which the latter is a specialisation of the

former. Both classes include a definition for the method oper and the attribute attr. Identify any issues
arising from this arrangement and consider their implications. (9 marks)

Answer Pointers

 This question examines Part 4 of the syllabus “Practice”
(a) Singleton

Intent: ensure a class has only one instance and provide a
common global point of access to it.

Applicability: use the singleton pattern when there must be
exactly one instance of a class, and it must be accessible to
clients from a well-defined point.

Consequences: controlled access to sole instance; avoid global
variable name space pollution; subclassing to configure the
particular instance required; can be extended to permit a set
number of instances.

Observer
Intent: define a one-to-many dependency between objects so
that when one object changes state, all its dependencies are
notified and updated automatically.

Applicability: when a change to one object requires changes on
others; and when an object should be able to notify other objects
without making assumptions about who they are.

Consequences: loose coupling between the subject and its
observers; a subject simply has a list of observers that conform
to an interface; support for broadcast communication.

2 marks

2 marks

4 marks

2 marks

2 marks

4 marks

(b) The class diagram reveals that the subclass Bbbb has provided
a redefinition for the operation oper. This is in keeping with the
designer seeking to deploy dynamic binding of this method and

4 marks

6 (of 10)

is typical of specialisation architectures.

The re-introduction of the attribute attr in the subclass Bbbb
might be considered an error. If permitted, this would mean that
an instance of Bbbb would have two attr attributes as part of its
state. Further, methods in the subclass can reference that attr
defined by Bbbb but not that defined in Aaaa.

5 marks

Examiners Comments
The Singleton and Observer patterns were the most often described patterns. Some candidates
only knew one design pattern well. Many could describe the pattern, but were weak at saying
where they applicable, when they could be applied and the trade-offs.

Few candidates attempted part b) of this question. Those that did mostly did not see the
consequences of redefining the attribute and method in the subclass.

Question 4
4. a) Explain the following terms:

i) Object;
ii) Class;
iii) Inheritance;
iv) Superclass;
v) Subclass.

(10 marks)

b) Object oriented programming languages implement inheritance, some languages however implement single
inheritance whilst others implement multiple inheritance. Distinguish between these types of inheritance
and discuss why a language designer might choose to implement one but not the other.

(5 marks)

c) A bank operates accounts. The basic operations on accounts are deposit() and withdraw(). The bank
operates a number of types of accounts amongst which are savings accounts and current accounts. Savings
accounts have no overdraft facility associated with them. Current accounts have a limited overdraft facility.
Using an object-oriented language with which you are familiar develop code which shows how inheritance
and polymorphism can be used to model the bank.

(10 marks)
Answer Pointers

 This question examines Part 2 of the syllabus: Concepts
(a) i) a self contained entity which brings together data and the procedures

which operate on that data;
ii) defines the common properties of an object i.e. all objects with the same

data and same methods belong in the same class;
iii) inheritance is when one class is based on a another class
iv) a superclass is a class which provides the basis for inheritance
v) a subclass is the class which is based on a superclass and builds upon it.

(b) In single inheritance a class may only inherit from one superclass. In multiple
inheritance classes may inherit from one or more superclasses. There are conceptual
difficulties associated with multiple inheritance. This is perhaps best illustrated by
considering the naming problem. If class A inherits from superclasses X and Y and
both X and Y contain a method with the same name which version of the method
does A inherit? This issue is resolvable but its resolution may not be easy for a
programmer to master.

7 (of 10)

Examiners’ Guidance Notes
Part a) which asked for explanations was generally answered well. In part b) most candidates
were able to distinguish between the two types of inheritance but many were unable to state any
problems that might be encountered in a language that implemented multiple inheritance. Part c)
which required the students to write code illustrating the use of inheritance only produced a few
good solutions. On the whole candidates did not demonstrate an extensive experience of
programming in an object-oriented language.

Question 5
5. a) Give the meaning of the following terms:

i) Abstraction;
ii) Encapsulation;
iii) Data hiding.

(9 marks)

b) A programmer wishes to create a set of classes that implement collections (e.g. Set, SortedSet, List,
SortedList). Explain how abstraction, encapsulation and data hiding can be used to create generic classes for
this purpose.

(10 marks)

c) Describe the contribution that abstraction, encapsulation and data hiding make to the potential of a language
to encourage software reuse.

(6 marks)

Answer Pointers

This question examines Part 3 of the syllabus: Principles

(a) i) the identification of common features and operations;
ii) the process of combining elements to form an new entity;
iii) a mechanism for hiding the details of the implementation of an

object from the code that uses it.

9 marks

(b) A process of abstraction should tell us that all collection classes do
essentially the same task. In particular every collection class will be able to
add to the collection and remove items from the collection. Via
polymorphism the nature of these operations may however be different so
adding to a Set will be implemented in a different way from adding to a List
(duplicates are allowed in lists but not in sets). Data hiding will conceal
these differences from us so that we needn’t worry about them but just be
aware that adding may in some cases fail. Encapsulation will allow us to
package different parts of an entity together as an object. Collection classes
which will operate on objects can be used in any context so that it is not
necessary to implement a specialist class for each different type of object
we wish to collect together.

10 marks

(c) By identifying the most general cases and hiding the details of specific
implementations from the code using it, it is possible to develop set of
classes which operate on all objects rather than just objects belonging to
specific classes. Such classes are easily reusable.

6 marks

Examiners Guidance Notes
This question was not answered very well with many of the candidates unable to demonstrate that
they had appreciated the principle of abstraction. Parts b) and c) were consequently also poorly
answered as they required candidates to discuss instances where abstraction yields general
solutions to a problem. Many candidates confused abstraction with the use of the abstract
keyword in Java and submitted description of the syntax for defining abstract classes.

8 (of 10)

Question 6
6. a) Give a simple example of each of the following diagrams and describe the context in which you would use

them.
i) Use case diagram;
ii) Object interaction diagram (sequence diagram or a collaboration diagram);
iii) State transition diagram.

(15 marks)

b) Describe an approach you might follow to derive test cases for a software product from the use case
diagrams that specify it.

(10 marks)

9 (of 10)

Answer Pointers

 This question examines Part 4 of the syllabus: Practice
(a) Use Case Diagram identifies the users of a system and the tasks they undertake.

BookBorrower

JournalBorrower

Browser

Librarian

Reserve Book

Return book

Borrow copy of
book

Borrow Journal

Return Journal

Browse

Update Catalogue

Object interaction diagrams show how objects interact to perform a task. This shows
how a system realises a Use Case. The diagram below is a sequence diagram, a
collaboration diagram showing interaction is also acceptable.

State diagrams show the dependencies between actions on an object and the state it
is in.

10 (of 10)

On Shelf On loan

borrow()

return()

(b) For each Use Case on the Use Case Diagram develop a set of scenarios. Scenarios
are natural language descriptions of an instantiation of the Use Case. Choose the
scenario which reflects the way in which the system is expected to behave. So for
example if the Use Case is “borrow a book”, select the scenario where the book is
available, the borrower has not exceed their limit etc. For each step in this scenario
consider all the exceptions that can happen. Exceptions are events which cause an
alternative scenario to be followed. For each exception state what the system should
do if that exception occurs. When the software is built test the normal scenario and all
the exceptions.

Examiners’ Comments
The performance on question six was on the whole quite good. The answers for part a) that asked
the candidates to demonstrate UML diagramming techniques were answered better than part b)
that required a description of the generation of test cases given a Use Case diagram.

