
W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

THE BCS PROFESSIONAL EXAMINATION
Diploma

April 2002

EXAMINERS’ REPORT

Object Oriented Programming

 Question 1

1. Operations and attributes of a class are given the following visibility scopes:
public, protected and private.

a) Explain the meaning of these three scoping terms. (9 marks)

b) Describe how each visibility scope would be used for both an attribute and an
operation. Identify and explain where good programming practice is being
adopted. (12 marks)

c) Identify a fourth level of scoping that might prove useful. What are the merits and
the deficiencies of this scheme? (4 Marks)

Answer Pointers

(a/b) The answer needs to highlight the distinction between these levels of visibility and
how they are deployed by a software developer. Generally this revolves around the
principles of encapsulation and information hiding. Hence we might start from a premise
of public methods for the class specification and private attributes for the representation.
Equally, we should consider the role for public attributes and private methods. A clear
distinction for the protected interface is required.

The public features of a class are visible to all other classes. A public method of one
class can be called by a method in another class. Equally, a public attribute can be
referenced and modified from elsewhere. This is generally not wise since it exposes the
implementation of a class to others. Constant public attributes are generally considered
safe.

The private features of a class can only be referenced by that class. For example, a
private attribute can only be referred to in the body of any of the class methods.
Generally, privacy of attributes is used to secure the implementation of a class. A
private method is used in a support role for the other class methods.

The protected features of a class are private to other classes and public to subclasses.
This way a subclass can directly reference the features of its immediate super class.

We might consider a scoping whereby private features are shared between two or more
classes. Java refers to this as package visibility and C++ as friend classes. Both break
the rules of encapsulation and, perhaps, are best avoided for that reason. However, in a
controlled environment there may be a case for deploying it.

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Examiners’ Guidance Notes

Many answers failed to properly explore the software engineering issues associated
with visibility. For many candidates the answer to part (b) was to repeat the answer to
part (a). Here, there was no evaluation of the role and purpose for the visibility levels.
Many answers did not describe why we generally make attributes private. Nor did the
candidates consider how we might safely place an attribute in the public interface. Part
(c) was not well answered by candidates, not recognising the fourth visibility level
offered by C++ friends and Java packages.

 Question 2

For each of the following concepts:

i) constructor
ii) method overloading
iii) method overriding
iv) polymorphism

a) Provide a definition of the concept; (12 marks)

b) Provide code which demonstrates the use of the concept written in an object
 oriented language with which you are familiar. (13 marks)

Answer Pointers:

A constructor is a special method within a class that is executed
when an object of that class is instantiated. Its normal use is to
initialise the instance variables of the newly created object.

Class MyClass{
 int x;

MyClass(int y){
x=y;

}
}

public static void main(String args){
MyClass myObject = new MyClass(1);

}

Code invokes constructor to create and object with instance
variable set to 1.

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Method overloading is a mechanism whereby within a class
definition it is possible to have methods with the same names but
with a different number of arguments or arguments of different
types. The compiler selects the version of the method that
matches the arguments supplied.

Class MyClass{

int value=0;

int increment(){
value++;

}

int increment(int x){
value=value+x;

}
}

Here increment() can be used in one form to increment by one or
if supplied a value will increment by that value.

In method overriding a subclass implements a method with the
same name and signature as one in the superclass. The method
effectively replaces the superclass method when invoked on an
instance of the subclass.

Class MyClass{
void printClassName(){

System.out.println(“MyClass”);
}

}

Class MySubclass extends MyClass{
 void printClassName(){
 System.out.println(“MySubclass”);

}
}

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Polymorphism is the ability to take many forms. In programming it
means the ability to refers to object that belong to different
classes in the same way.

Interface MyInterface{
void display();

}

class MyFirstClass implements MyInterface{
void display(){

.

.
}

}

class MySecondClass implements MyInterface{
void display(){

.

.
}

}

public static void main(String args[]){
MyInterface[] myArray = new MyInterface[2];
myArray[0]=new MyFirstClass();
myArray[1]=new MySecondClass();
myArray[0].display();
myArray[1].display();

}

Polymorphism makes it possible to have an array of objects of
different types and apply the same method to each object.

Examiners’ Guidance Notes

Candidates frequently confused overloading and overriding. Interestingly a number did not
seem to know what a constructor was and left this part blank.

The standard of the code produced was often poor, again mixing up overloading and
overriding. In particular, candidates were unable to demonstrate polymorphism in a code
fragment. Many appeared to think this only worked in the inheritance hierarchy - very few
appreciated that classes that are not part of the same hierarchy can have methods with
identical names. Only one candidate gave a Java interface as an example. Most used C++
and Java as the language, one used Visual Basic but with little success.

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Question 3
a) Explain the following terms:

i) abstract class
ii) single inheritance
iii) multiple inheritance (9 marks)

b) State with an appropriate example what is meant by the term abstraction.
 (8 marks)

c) Discuss the importance of abstraction in making software reuse possible.
 (8 marks)

Answer pointers

a) An abstract class is one which represents some but not all of the
characteristics of a real-world class. It may not be instantiated.
Typically it is used to hold the common properties of its concrete
subclasses.

In a language with single inheritance a subclass may only inherit
from a single superclass. A subclass inherits the methods and
data of its superclass. A superclass may have a number of
subclasses.

In multiple inheritance a subclass may inherit from a number of
superclasses. As with single inheritance the subclass inherits all
the methods and data of all its superclasses. There may be a
problem if superclasses have identically names methods and
instance variables.

b) Abstraction is the process of identifying the essential issues of a
problem from the non-essential. In the context of OO
programming it involves identifying the essential characteristics of
an object and separates these issues from the way those
characteristics are implemented. Consequently objects are
identified by their behaviour and not the way in which their data is
stored.

One example of abstraction is a Stack class. For this class we can
identify a set of essential operations that would include Push and
Pop. The issue of how the stack and the elements on the stack
are actually stored is not important to the user of the stack.

c) The abstraction process allows programmers to write code that
expresses the essential nature of an object. A programmer who is
conscious of the storage requirements of the object on a stack
often produces code which is only suitable for objects of that type.
Consequently the code that is written for a stack of integers is
often not easily modified to produce a stack of GraphicElements.
A programmer using abstraction produces code that implements
the characteristics of a stack and is suitable for objects of any
class. This makes it possible to reuse the code written for the
stack in many different contexts.

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Examiners’ Guidance Notes

On the whole candidates were able to provide good answers to part a), a number achieved
full marks. A few candidates thought that single and multiple inheritance determined the
number of subclasses a class could have, not the allowed number of superclasses.

Candidates were much less able in answering parts b) and c). Many chose not to answer
these parts at all. There was confusion between abstraction and abstract classes. Others
confused inheritance with reuse. A few candidates explained reuse but did not relate it to
abstraction.

Question 4
The drawing in Figure 1 below is representative of the output which might be
constructed while using an interactive drawing tool. In the drawing there are a
number of rectangular shapes that are connected by lines. The sample diagram
shows rectangles, plain lines and lines decorated with arrowheads. It might be
envisaged that the user selects the required shape to draw from a palette then places
each into the drawing.

Figure 1

a) Prepare a class diagram for this drawing tool to compose and edit typical
diagrams as shown above. In support of this class diagram you must provide
an analysis of the objects in the problem and the relationships that exist
between them. (8 marks)

b) For each class you should propose typical features (attributes and
operations) that you would expect of such classes, explaining their purpose.
(7 marks)

c) Figure 2 below, presents a possible flowchart that might be constructed with
the drawing tool. In it there is a decision box (diamond shape) in addition to
the original shapes [previously, there were only rectangles].

Construct a class diagram for this revised drawing tool. (10 marks)

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Figure 2

Answer Pointers

(a) The class diagram we should arrive at is given below. A diagram consists of any
number of drawing elements. In turn, the latter can be either a node or a relationship. A node
represents any vertex within the graph and a relation is any connection between nodes. A
specific kind of node is, of course, a rectangle symbol.

(b) Nodes will have geometric properties such as their location on the diagram.
Additionally, we might expect nodes to have names. relation might include an
indication of the type of decoration it has, eg arrowhead. All drawing elements should
be capable of being dragged and edited.

(c) The original class diagram is essentially unchanged. Specifically all we require is to
introduce a new class for a diamond shaped decision box. The new figure is:

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Examiners’ Guidance Notes

In this and in question 5 candidates need to be fully conversant with specialisation and be
prepared to assemble solutions to problems using it. Many respondents did not use
specialisation in formulating an answer, using only aggregation and association instead. This
produced very difficult solutions. For those that tried specialisation then, surprisingly, we had
inappropriate isA relationships, for example the subclass Rectangle as a specialisation of the
superclass Line. Because of this, part (c) was poorly answered where, in fact, it is a
surprisingly easy extension to the architecture.

Question 5
The class diagram in Figure 3 below presents a class hierarchy in which Aaaa is a
superclass to both Bbbb and Cccc. The superclass Aaaa has an implementation for
some operation mmm.

Figure 3

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

a) Present a general scheme whereby the implementation of the operation mmm
can include some specific behaviours from the subclasses Bbbb and Cccc.

 (9 marks)

b) If some object of the class Bbbb receives the message mmm, provide a
detailed explanation of the execution flow of this message and any
subsequent messages and the recipients of all these messages. What would
be the difference, if any, if the receiver of the message mmm were of the class
Aaaa? (7 marks)

Consider a set of data values, such as that found in a spreadsheet, which are to
be presented in a number of views. The spreadsheet data is to be presented: i) in
the conventional manner of a two-dimensional table; ii) as a bar chart; and iii) as a
pie chart. When the data set is changed, then all of the views must be updated to
reflect the revisions.

c) Suggest a suitable class diagram for this scenario, identifying the motivation
for its use, and demonstrating the applicability of its structure for this
situation. Specifically, you should seek to ensure that the views are treated
uniformly. (9 marks)

Answer Pointers

The question and its answers are motivated by design patterns, but these need not be
offered as the solution. What the question seeks is a valid solution to this type of problem
that occurs in OO systems.

(a) The solution is achieved through the template method design pattern. The superclass
Aaaa becomes an abstract class with the introduction of a deferred method abs. The
method body for mmm includes a call to this method. In the concrete subclasses
Bbbb and Cccc each redefines the abs method with their own specific behaviour.

(b) If some object of the class Bbbb receives the message mmm, then it executes the
method defined in the superclass since it has no redefinition for this method. Method

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

mmm then sends the message abs to itself, the recipient, of course, being of the
class Bbbb. Since the class Bbbb has a definition for this method, then mmm in class
Bbbb is executed.

A similar story applies to an object of the class Aaaa receiving the message mmm.
This time, the specialised behaviour of abs in the class Aaaa is executed.

(c) The observer design pattern is used when a one-to-many dependency exists
between objects so that when one object changes state, all its dependents require to
be notified. The observer pattern describes how to establish these relationships. The
key objects in this problem are the subject and observer. A subject may have any
number of dependent observers. All observers are notified when the subject
undergoes a state change.

The class diagram for the observer pattern is shown below. A Subject has a one-to-many
relationship with objects of the class Observer. Observer dependents can be associated with
a Subject using the method addObserver. When a state change occurs in a Subject it
invokes its notify method coded as follows:

FOREACH obs IN observers DO
 obs.update()
ENDFOREACH

The implementation for notify, sends the message update to every Observer object
associated with the Subject.

Examiners’ Guidance Notes

In this and in question 4 candidates need to be fully conversant with specialisation and be
prepared to assemble solutions to problems using it. They need to be aware not only that a
subclass inherits all the features of its superclass, but also how method execution ‘bounces’
around the class hierarchy. Further, we need to appreciate the use of abstract (deferred)
methods in a superclass and its redefinition in subclasses.

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Part (c) requires a model in which changes in state to one object are notified to other
interested objects. The sophisticated solution deploys the observer design pattern but others
are possible.

Question 6
A college operates courses in the following way. A college administrator is
responsible for introducing courses and removing courses from the college’s
offering. Students may enrol for courses that are on offer. To enrol, a student must
consult with an administrator. The administrator will check that the student is eligible
for the course. Students can only enrol if the course exists, if they possess the
correct educational background and if they can pay the fees for the course. Students
may withdraw from a course by visiting an administrator. Once enrolled, students
attend sessions that are delivered by a tutor. The tutor sets examinations. Students
attend examinations. After the examinations the student receives feedback on their
performance from the tutor.

a) Draw a use case diagram for this system.
 (15 marks)

b) Develop a use case description of the way a student enrols. Your answer
should include a normal sequence and an alternate sequence.

 (10 marks)

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

Question 6
Answer pointers

a)
College

Administrator

Introduce course

Remove Course

Student

Enrol

Tutor

Attend Session

Feedback

Set Examination

Attend Examination

Withdraw

W:\New Site\content\VERSION3\exam\examiner\apr02\dipoop.doc

b) Normal sequence

The student visits an a administrator;
The administrator checks that the course requested by the
student is run by the college;
The administrator checks the student’s educational qualifications;
The adminstrator checks that the student can pay for the course;
The student is enrolled.

Alternate sequence

The student visits an a administrator;
The administrator checks that the course requested by the
student is run by the college;
The course is not available so the student is not enrolled.

Examiners’ Guidance Notes

This question was very popular with candidates and was answered well. A question on use
case diagrams has appeared on all Object Oriented Programming papers since the
introduction of the syllabus. In earlier years answers to the question were quite poor but the
quality of answers has improved year on year. Future papers may examine more advanced
features of use case diagrams. As in last year’s examination the main failing in answers to
part a) was a lack of appreciation that a use case could involve more than one actor.

In part b) candidates often supplied alternatives (via if clauses) in a single sequence. There
was a tendency to invent details which did not form part of the supplied case study.

