
W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
1 (of 10)

THE BCS PROFESSIONAL EXAMINATION
Certificate

October 2002

EXAMINERS’ REPORT

Software Development

General Comments on Examination Technique

Candidates should always number their answers. Where this does not occur, the
examiner has to guess at which question was being attempted and this can only
disadvantage the candidate. A number of candidates sandwiched parts of answers
between others with no indication that this has been done. All the pages in the answer
book are numbered – it is preferable to say ‘continued on page xx’.

Writing the answer to a question then writing it again gains no extra marks - it just
wastes time. Lengthy crossings-out again wastes time. Candidates must learn how to
write an acceptable answer without having to write it out fully in rough first – there
simply is not enough time. It is often useful to jot down notes/key points as an aide
mémoire prior to writing out the full answer but there is not time to write the answer in
rough and then in a neater hand.

Writing out the question prior to answering just wastes time and never gains any marks.

Illegible handwriting is assumed to be wrong and gains no marks. The onus is on the
candidate to show the examiner that they can answer the question, not for the examiner
to guess what the candidate has written.

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
2 (of 10)

SECTION A

Answer TWO questions out of FOUR. All question carry equal marks.

The marks given in brackets are indicative of the weight given to each part of the

question.

Question 1

1. The file ‘studs’ contains details of students enrolled on courses in

alphabetical order of student names. Each student record has the following
items:

<identifier> <student name> <course code> <options chosen>
8-digit
integer

30 characters 4 characters 20 characters

92878112 BABBAGE
Charles

PNC1 PRO1 HR1 MATH
COMP

Another file, ‘descr’, contains full descriptions of the courses and the
corresponding course codes:

<course
code>

<course description>

4 characters 30 characters
PNC1 National Dip/Computing year 1

 a) Specify a suitable data structure to contain the <student name> and a

suitable data structure to contain one student record. Hence write a
suitable description for the files 'stud's and 'descr'. (8 marks)

 b) Write an initial algorithm to

 read the entire ‘studs’ file
store each different unique course code encountered in the 2-
dimensional array ‘cscodes’

 count how many unique course codes are found
 how many students are on each course and
 the total number of student records on the file. (14 marks)

 c) Write code to sort the array ‘cscodes’ into descending order of course

code.
 (You do NOT need to deal with error conditions in any of the data items).
 (8 marks)

This question was generally unpopular, suggesting that either candidates do not feel
confident in tackling this sort of question in the time or that they are unprepared in this
area of the syllabus. Usually if a candidate attempts this type of question it is done well.

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
3 (of 10)

Answer Pointers

This was a straightforward algorithm development question. A simple step wise
development approach was perfectly acceptable.

Candidates appeared to write the sort code from memory so often important parts were
forgotten. If candidates just briefly checked their answers they would pick up the
majority of errors and gain higher marks.

Question 2

2. The Iveson Algorithm for a sorting method is given below:

line number legend
 1 Start t ← 1 t becomes 1
 2 i ← 0 i becomes zero
 3 t : 0 compare t with 0. If equal, exit
 4 t ← 0 12 exit t becomes 0
 5 i ← i + 1 increment i by 1
 6 j ← n j becomes n, the no. of items to be sorted
 7 j : i compare j with i. If equal, goto t:0
 8 j ← j - 1 decrement j by 1
 9 key(x[j]) : key(x[j+1]) compare the KEY of record x[j]

 with that of record x[j+1]. If x[j] key
 10 x[j] ⇔ x[j+1] was greater x[j+1] then EXCHANGE
 records x[j], x[j+1]
 11 t ← 1 t becomes 1

a) Translate this algorithm literally into a procedural programming language.
(Thus the transfers of control implied by

 must be translated into ‘GO TO label’ statements.)
 State which language you are using. (10 marks)

 b) Write a detailed criticism of the style of programming implied by the

algorithm.
 (6 marks)

 c) Modify the algorithm and translate it into a modern, structured

PROCEDURE ivsort(…) with meaningful variable names and without
using labels. The PROCEDURE ivsort(…) requires appropriate
parameters; that is, everything ivsort uses must be passed as
parameters. (14 marks)

This was a quite popular question but an unwise choice for those who could only
answer part a) as they were guaranteed to lose two thirds of the marks.

Answer Pointers

a) A surprising number of candidates who translated the algorithm into Pascal did not

use labels even though the question asked for GOTOs to be used. The symbol

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
4 (of 10)

⇔, which the question stated meant "exchange", needed translating into code –
this was an essential part of the answer.

(b) It would appear that few candidates are taught to evaluate programming styles as

many guesses and weird ideas were given. Very few made any comment about
the use of GOTOs, for example. Some thought that a description of the algorithm
was required and so wasted valuable time – this was already given as the ‘legend’
in the question.

(c) This part of the question was either omitted or done quite well. Many forgot to

include procedure parameters despite this being specifically requested in the
question. The examiner suspects that some candidates wrote out memorised code
for the sorting method rather than developing the Iveson Algorithm.

Question 3

3. a) Describe the three common constructs of programming languages –
 sequence, selection and iteration. (10 marks)

b) In a programming language of your choice, show how code structures
 are built using these constructs. (10 marks)

 c) Show how these constructs can be used to build up data structures.
 (10 marks)

A very popular question in which most students did very well in parts a) and b), but very
few good answers to part c).

Answer Pointers

a) A basic understanding of sequence, selection and iteration was required. Sequence

means ‘do in this order’. Selection means ‘do this or that’. Iteration means ‘do this a
certain number of times.

b) Examples in a Pascal-like code could be

 begin .; .; . end for a sequence.
 if .. then .. else .. or case x of ….. for a selection
 do .. until .. for an iteration

c) Data structure examples could be

 A record definition as a sequential collection of different fields.
 A record definition with alternative field definitions as an example of a selection
 A file definition as an example of an iteration (of records).

Question 4

4. a) Describe a software development method with which you are familiar and

 identify the type of programming language for which it is most suited.
Give reasons for your choice of language type. (15 marks)

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
5 (of 10)

b) For the method you have described in part a), discuss the cost of getting
the development wrong at each stage of the method. How does the
method contribute to, or reduce, this cost at each stage? (15 marks)

This was an 'open' question, seeking insight from each candidate about their own
reflections of using a programming language under a management discipline (plan, or
life cycle). Too many candidates forgot the 'refection' part and offered detail expositions
of a life cycle that they knew. Various combinations were acceptable. Notes below are
NOT expected to be learned, but to be observations from candidates in particular
programming situations. Many candidates gave both example styles shown.

Answer Pointers

a) Example 1 - Waterfall with a procedural (3GL) language such as Pascal or C.

Waterfall places great emphasis on completing each stage before continuing. In
part, this is because of the low productivity of procedural programming. Design
notations that identify modules and interfaces map onto programming languages
with facilities for modules and interface definitions. Unit testing and system testing
map on to white box 3GL logic tests and module integration black box map on to
interface/functional testing.

Example 2 - DSDM (Dynamic Systems Development Method), or Prototyping, or
Evolutionary prototyping, places great emphasis on delivering product and defining,
often vague, user requirements. In particular, DSDM places more importance on
delivery to a fixed time schedule rather than floating the schedule to accept late
delivery of functionality. Programming languages suitable for this approach are
high-productivity 4GL; MS ACCESS; MS ACCESS with Visual Basic; Visual C or
C++ or Basic with CASE support, or O-O systems with CASE support.

Answers that simply described either life cycle or programming language were
awarded few points. Any reflection was generously rewarded particularly reflections
from application of skills and/or experience.

b) Example 1 - Many good answers described rework as the main reason for extra

cost because Waterfall proceeded very slowly and rework proceeded just as
slowly, and described how use of design (CASE) and programming tools to speed-
up the stages, or use of testing tools to speed-up testing at each stage, were ways
of reducing the cost of rework. Poor answers gave great detail on life cycle with
cross-referencing to a suitable programming language.

Example 2 - Many good answers identified cost of implementing the wrong
functionality but described how iteration using high-productivity programming
systems quickly produced software to user satisfaction. Poor answers repeated
pieces from a), asserting that 'doing it right' or 'doing all the tests' or 'doing it
correctly' was the way to minimise costs.

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
6 (of 10)

SECTION B

Answer FIVE questions out of EIGHT. All questions carry equal marks.

The marks given in brackets are indicative of the weight given to each part of the

question.

Question 5

5. a) What TWO conditions must be met for a recursive solution to a problem
to be found? (6 marks)

 b) How do recursive solutions operate in practice? (3 marks)
 c) When is a recursive solution likely to be unworkable in practice?
 (3 marks)

A number of candidates clearly tried guesswork and produced remarks such as
‘recursion is used to by-pass the real problem’. A number of candidates used
memorised code of a recursive example but did not understood how it answered the
question.

Answer Pointers

The best answers generally came from those candidates who gave a simple recursive
routine and then used that as an example to explain their answer.

Question 6

6. If A is an approximation to the cube root of a real number N then A + C is a

better approximation, where C is given by the formula

 C = [N/A2 - A] / 3

 The initial value of (A) is A/3.

 a) Develop a process for repeatedly evaluating the cube root of an input
number until successive values differ by less than an input limit E.

 b) Incorporate it into a user-defined function ‘Cubrt(…)’ with appropriately-

chosen parameters. State your chosen language. (12 marks)

The inclusion of a simple formula in the question seemed to stop a lot of candidates
attempting this question. Some candidates used INTEGER variables throughout – a
serious error when values must be REAL numbers.

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
7 (of 10)

Answer Pointers

A function along the following lines was required

FUNCTION cubrt (N : REAL; E : REAL) : REAL;
 VAR A, C : REAL;
 BEGIN

A := N / 3; { set first approximation }
C := E + E; { set change of value, i.e. C, greater than E }
WHILE ABS (C) > E DO

 BEGIN
 C := (N / (A*A) - A) / 3; { calculate change }
 A := A + C { new cube root }
 END;

cubrt := A
 END;

Question 7

7. a) Define a linked list data structure to contain a name (20 characters), an
integer telephone number and one pointer to the next list member.

 (2 marks)

 b) Two such linked lists have been set up (list1 and list2) each having their

members in increasing telephone number order. Develop an algorithm to
merge the lists, creating one new list which retains the members in

 increasing telephone number order. State your target language.
 (10 marks)

Quite popular though the majority only did part a) which was worth ONLY two marks. A
number of candidates spent a significant amount of time on part a) even though it was
worth just two marks - a classic case of poor examination technique.

Answer Pointers

Attempts fell into two distinct groups: namely, those who knew the work and scored
[10,11,12] marks and those who knew only the linked list definition ad scored [0,1,2].
This was a simple merge algorithm.

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
8 (of 10)

Question 8

8. A publisher offers an author a fixed contract price A, to publish a novel by

the author. The publisher expects to recoup this outlay from book sales. The
publisher will retain a royalty R (typically being between 10% and 30%), being
a percentage of the bookshop sale price P. The book selling price is typically
between £3 and £15.

Write an interactive program which prints a table showing how many books
have to be sold between these limits for the range of selling prices for the
publisher to recover his investment. The necessary data (A) is requested
interactively before printing the table. (12 marks)

Candidates appeared to be put off by the description of the problem even though it is a
simple problem

Answer Pointers

If the book selling price is P, and the publisher retains a royalty R (expressed as a
fraction), the publisher's return per book is (P * R). If the author’s contract price is A,
then the number of copies, C, needed to be sold for the publisher to recover their costs
is C = A / (P * R)

If this formula is included within a loop of the range of selling prices, P, then the number
of copies required for each price can be output. If this loop is included within a loop of
the range of royalty payments, R, then the number of books for different royalty/prices
can be output.

Question 9

9. a) Describe the operation of a stack. (6 marks)
 b) Describe an IT application that needs to use a stack. Show how the

application uses the stack. (6 marks)

Answer Pointers

a) Many good answers described the operations of push and pop, the general

operation of Last In First Out (LIFO) and tests for underflow or overflow. Poor
answers omitted one or more of these descriptors.

b) Good answers showed understanding of what a stack is for, e.g. parsing or

translating – conversion to infix, postfix or other orders of expression or used by the
Program Counter to store/push a subroutine address at a procedure call and later
return/pop, or assembling a set of structured data by pushing each until some
terminator then popping the lot somewhere safe. Poor answers that described
stacks of plates in a restaurant, or other physical descriptions, but did not relate it to
a computing environment did not score highly.

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
9 (of 10)

Question 10

10. What types of documentation should you give to a client on completion and
hand over of a software project? Give reasons for the type of documentation
specified.

(12 marks)

Good answers showed discrimination that ‘documentation’ does not always means
‘everything from the life cycle’.

Answer Pointers

In the question, 'client' and 'handover' guided good answers towards a User Guide that
described features and functions of the product, and Maintenance documentation,
including sample test data and results, code listings and design documents. Poor
answers stepped through a lifecycle and insisted that all aspects of design and software
be handed over. Some answers focussed on ownership and legal guarantees which is
important but not what this question was about.

Question 11

11. A graphical user-interface (GUI) is designed to meet the needs of the person
using it. Describe THREE features that you expect to find in the GUI of an
interactive website for a travel company. Give your reasons.

 (12 marks)

Answer Pointers

Good answers linked the functionality of a travel agent with descriptions of how the GUI
should be programmed; for example,

• Drop-down lists - for user control to choose required dates, or required location.
• Search engine – to produce lists of possible flights/locations and alternatives.
• Frames approach - to maintain navigation while offering travel, hotels, car hire
• Radio buttons – for selection of preferences such as airline or hotel.

Poor answers neglected the programming nature of this question and described what a
good GUI looked like, or described the aims of a good GUI (to put the user in control)
but without describing how this might be achieved.

Question 12

12. Describe the advantages and disadvantages of the following file
organisations:

a) sequential only (4 marks)
b) index only (4 marks)
c) index-sequential hybrid (4 marks)

This question was poorly answered in the main. Many students did not know about
batch processing that can employ simple sequential files very efficiently. Or that index

W:\New Site\content\VERSION3\qualifications\exam\examiner\oct03\certsd.doc
10 (of 10)

organisation is best suited to direct-access such as handling telephone or other one-off
queries. Or that the hybrid index-sequential can perform equally well under batch and
direct access conditions. In each case, increasing demands for index storage and index
maintenance are not really 'negatives' but part of structuring data for more efficient
processing. Some answers considered unlikely cases where an index might be wrong
or absent

Answer Pointers

a) Sequential only – good answers described bulk runs; e.g. invoicing, payroll,

mailshots. Update by making a fresh master copy, and the need to create the file
initially in some order. Deletion is by omission at next master-create. Disadvantage
is slow and unsuitable for individual record access because of need to search
sequentially.

b) index only – very fast retrieval; e.g. real-time application such as customer

telephone query, or billpoint (ATM) interaction. Needs a lot of maintenance if data
population changes often. Must be kept in order. Must be kept disciplined, so that
index-lookup is not confounded by variations in the data. For the overhead work of
creating an indexed data structure we can get much increased interactive
performance. Not much good at bulk runs, since the only access is by index look-up
that would have to be repeated for every access, event 'sequential' ones. .

c) Index-sequential – hybrid organisation combining best of both above. Data records

are laid out sequentially, for ease of bulk processing, but also there is an index to
each record to speed up interactive processing. File updates require index updates
as well, so file updating is more costly. Again, the apparent disadvantage of
structuring the data delivers rich performance rewards for both bulk runs and
interactive queries.

