THE BCS PROFESSIONAL EXAMIANTION
Certificate

Software Development
October 2001
EXAMINERS’ REPOT
Software Development
General Comment

The answers to the program development type of questions would indicate that
candidates have weak practical skills. An ability to design and develop a solution and
create carefully thought out test data is just as important as knowing the syntax of a
particular language.

QUESTION ONE

a) Develop pseudocode to process student examination marks from the file
‘rawmarks’ thus:

Each student record contains a name (20 characters) and an identified (6
digits) followed by six integer marks expressed to the following criteria:
‘PASS’ : All six examination marks are passes
‘RESIT’ : Either 5 marks are passes and one mark is below %40% or 4
marks are passes with two marks lying between 35% and 40%.
‘FAIL’ : All other cases

An individual mark is deemed a ‘pass’ if it is 40 or more percent.

In addition to the processing outlined above, create two output files:
‘passlist’ containing the names and identifiers of only those candidates who
have passed

‘outfile’ a printer/character file containing the students’ names, identifiers,
exam marks, average mark and overall results.

Separately count the number of pass, fail and resit candidates, and append
this information to the end of the ‘outfile’ with suitable captions.

You must show adequate development and give at least two stages of

pseudocode development. Actual program code is not required. (24 marks)

b) Describe suitable data structures to use with the progam in a programming

language of your choice. State which language you are using. (6 marks)

This question was not popular and in general it was poorly done.

Very few candidates knew how to develop a modest-sized problem from a specification
to code via several stages of pseudo code. Many tried to write code straight from the
specification, which is possible in this case, but is easier if developed systematically.
The structure of nested ‘IF’ statements was invariably wrong.

Many candidates put down ‘Pascal’ as the target language but clearly have no

experience of records or files. Very few attempted to make any distinction between the
three files mentioned and used end-of-file instructions indiscriminately. Others showed
an experience level appropriate to problems such as ‘add a sequence of numbers and

print the average’ - quite inadequate for this problem. They ignored the instructions in
the question and asked for the input items individually with prompts. A lot of writing for
no marks! A few candidates did get the problem completely right.

b) Some candidates wrote about every data structure they could think of; e.g. trees,
queues, stacks - appropriate or otherwise. Marks were awarded if the necessary data
structures were given in a) as part of the program. If in doubt, candidates should not
deliver a ‘brain dump’ of everything they know about data structures generally as it will
not gain marks and just wastes their time.

Answer pointers:

A RECORD or STRUCTURE is needed to hold the details provided for each student
such as:

a_student = RECORD
name : ARRAY [1..20] OF CHAR;
indent : INTEGER;
mark : ARRAY [1..6] OF INTEGER;
END
‘rawmarks’ will thus contain a sequence of these records thus
rawmarks : FILE OF a_student

A record for use with ‘outfile’ should also contain a character field to hold {pass/resit/fail}
and a REAL field to hold the average mark.

As three files are mentioned in the question it is important to distinguish their use in the
algorithm, e.g. END-OF-FILE(rawmarks), WRITE(outfile), WRITE(passlist). Vague use
of READ, WRITE did not gain marks.

Indentation is helpful in showing the scope of BEGIN...END compound statements. It
can be shown in several different ways, e.g. extended brackets, vertical lines.

It is easier to develop the algorithm in two or three stages. Stages left for later
development can be marked with an * or similar. This avoids too much confusing detail
at the first stage. Some methods suggest numbering these stages, useful as only those
needing development are written out subsequently. The numbers need not be in strictly
ascending order, and units of 10 allow for subsequent insertions.

This algorithm can be checked against the question to see if the required actions are
correctly set down. In particular, that actions NOT asked for are not there. Details such
as captions for tables, output of counters can be inserted at a later stage so that the
initial algorithm is not cluttered with detail.

QUESTION TWO

The following program is intended to put the contents of three integer variables
into descending orders:

Line No code
0 PROGAM order
1 INTEGER VARIABLES num1, num2, num3
2 PROCEDURE whatdo (INTEGER VARIABLES x, y)
3 LOCAL INTEGER VARIABLES temp
4 temp —x
5 X —Yy
6 y «— temp
7 END whatdo

10
11
12
13

d)

BEGIN {code for ‘order’ — top level}

READ (num1, num2, num3)

IF num1 IS LESS THAN num2 THEN CALL whatdo (hnum1, numz2)

IF num2 IS LESS THEN num3 THEN CALL whatdo (num2, num3)

WRITE (num1, num2, num3)

STOP
Dry run the above code with input values 1, 2 and 3. (12 marks)
What action is performed by the PROCEDURE whatdo? (2 marks)
Modify the given code so that the stated purpose of the program is achieved

with any three input values. Clearly indicate where the modified code is
placed in the supplied code, which need not be written out in full. (10 marks)

Specify a set of test data values sufficient to full test the code. (6 marks)

A popular question with the full range of marks awarded.

a)

b)

d)

Candidates are familiar with this style of question and generally handled it well.
Many did not realise that the parameters passed between procedure ‘whatdo’ and
the top level MUST be of the Variable kind for the code to achieve its stated
purpose. (Those who did not realise this and left ‘num1’, ‘num2’ and ‘num3’
unchanged were only penalised by 2 marks). It was particularly important to
associate the given line numbers with the changes in variable/register contents.

The ‘whatdo’ code merely swaps the contents of the two variables ‘X’ and ‘y’. This
was all that was needed to gain the 2 marks. One candidate wrote a page; nearly all
supplied a paragraph. Those who wrote ‘swaps the contents’ gained the marks. A
few thought it did a ‘sort’.

Those who got this far had the correct instructions, usually in the right place. An
indication of why this was used was never given, but was desirable, particularly if
the wrong variables were used by the candidate. The additional swap instruction
necessary to place the variable contents in descending order can be derived from
the result of the dry run and the stated purpose of the code. A few replaced the
entire program with memorised code for a standard sorting method, not what was
required. ‘Modify the given code’ meant ‘add or delete something’ not replace it all
with something entirely different.

Guesswork was used here rather than discovering how to test each path through
the code. Candidates need to learn how to provide systematic test data, not throw
in as many numbers as come to mind to see if the code falls down. One mark was
given for those who supplied real numbers, characters, enormous integers and the
like. In these questions, should input error detection be required it will be clearly
stated.

Answer pointers:

Dry run of given program ‘order’.

Important registers/variables have a vertical column. Line numbers are essential in
showing the sequence of the run. Registers whose contents are as yet unset are best
shown containing a ‘?’; not every language automatically sets them to zero. Registers
unchanged on any particular line may contain “ (ditto) or left blank; it is not essential to
repeat contents. The rightmost column should be used for clarification, registers not
assigned a column or output.

numl num2 num3 X Y temp comments/output

? ? ? ? ? ? Setup

“ “ “ ! ! “ Begin at top level

1 2 3 “ “ “ READ

! “ “ “ “ ! IF{TRUE} call what

1 2 3 1 2 ? Parameters
passed

! “ “ “ “ ! Set up local
variable

1 X,Y now
swapped

2 1 3 ! ! ! Values passed
back

“ “ “ “ “ “ IF{TRUE} call
whatdo

) . “ 1 3 : Parameters

passed

W W
W w
e N

X,Y now swapped
Values passed
back

OUTPUT 231
STOP

N
w
[EnY

The parameters ‘x,y’ have to be of the variable type which return values to the top
level, otherwise the stated purpose of getting variable contents into descending
order will never work.

The ‘comments’ column can be brief and need not contain the actual instructions -
the line numbers suffice for that.

The stated purpose of getting the contents of num1, num2, numa3 into descending
order has not been achieved.

Procedure ‘whatdo’ SWAPS the contents of the variables x, y using ‘temp’ as an
intermediate.

In order to complete the stated purpose, examination of the required dry run
changed {1 2 3} to {2 3 1}. This suggests that a FURTHER swap of the contents of
‘num1’ and num?2’ is needed which would place the values {1 2 3} in descending
order {3 2 1}. Hence the instruction

IF numl1l < num2 THEN CALL whatdo (num1, num2)

Is placed after line 11 and before line 12.

A full set of test data for the modified code will need SIX groups of 3 values, to test
the pathways through the code. Thus appropriate values are :-

1 2 3 (given) 231
132 312
. 213 321

There is NO advantage in using large or negative numbers here, or more than six
groups of values.

QUESTION THREE

a) Specify and discuss the principles of multiple module program construction.
(24 marks)

b) Describe the part that the client should play to carry out the task successfully.
(6 marks)

Many candidates found sympathy with build, test and maintain. Many more only found
sympathy with build alone. Answers were uniformly very short, typically one page, not
at all reflecting any structured approach by candidates to earn 24 points by, say,
identifying five or six separate things to say in order to address the breadth of the marks
available.

Answer pointers:
Principles of modular construction

Design: high cohesion (purposefulness) with low coupling (low interconnectedness),
black box function-focus ideas, layering, refinement

Implementation: separate compilation and programming languages that support this,
name and reference to specific stores etc. obscured in OO ideas, dynamic space
allocation to support efficient run-time operation in a multi-procedure program.

Integration: using teams, importance of integration testing and configuration
management.

Maintenance: importance of regression testing, 'plug-replaceable’ ability if no side
effects, specific compilation sequence for rebuild and importance of configuration
management. In part (b), candidates were asked to describe the role of the Client.
Many gave no understanding of syllabus content, and said things like provide salary,
provide office and infrastructure etc. Preferred answer indicated client input in TWO
areas - requirements definition and validation testing. Any answer showing some
awareness of these was generously rewarded.

Question 4

a) Structures Programming is a technique to reduce errors when programming.
With respect to algorithm design, Structures Programming defines certain
rules for the construction of algorithms. Describe at least THREE of these
rules of Structured Programming, as they might be expressed for a modern
programming language™. (10 marks)

b) Defensive programming is a technique you can use to improve your
program’s ease of maintenance and robustness in use. Describe at least
THREE techniques of Defensive Programming, as they might be expressed for
a modern programming language. (10 marks)

c¢) Compare and contrast the terms Structured Programming and Defensive
Programming with reference to any modern programming language with
which you are familiar. (10 marks)

" a‘modern’ language may be considered as any third-generation or visual

programming language.

Many candidates misunderstood structured programming as methodological and
produced answers similar to question three on design issues.

Part b) was about Defensive Programming. The question took pains to describe what
this meant and hinted very broadly at the expected answer. Candidates largely ignored
this hint.

Answer pointers:

Structured programming has several features by which it can be recognised: single
entry/single exit modules; controlled use of sequence, selection and iteration constructs;
and very controlled use of jumps (e.g. pre-declared labels for compiler checking).

For robustness, Defensive Programming is a technique that simplifies file handling, uses
validation checks on all inputs, and employs the ideas of no global variables to promote
fewer failures at run time. For maintenance, the program text (names of variables,
comments etc.) should clearly describe the algorithm and use of globals should be
avoided. Any answers that evinced simple understanding were well rewarded.

Having answered the first two parts of the question, candidates only needed to
demonstrate a thoughtful comparison of the two sections to gain high marks.

QUESTION FIVE

The number of combinations (C) from M items taken N at a time is given by
C= fac(M) / [fac(N) * fac (M — N)]
where fac(X) = X*(X-1)*(X-2)*...*2*1

Write a function to evaluate fac(X) and incorporate it in a progam to request input
values M and N and calculate C. Provide appropriate captions and state which
language you are using. (12 marks)

Nearly all candidates have seen the code for computing the factorial of an integer in
programming books/classes and so this question was very popular.

Answer pointers:

Either the recursive method or the iterative method was acceptable. (Those who
supplied both did NOT get extra marks!) In their zeal to put down something they knew
some candidates forgot that it was associated with the calculation of the combinations
(C), which needed an input of the number of items required (N) from the group (M) and
an output of ‘C’ and so threw away marks.

A far worse error was to copy the definition of fac(X) directly into the function with the
ellipsis (...) used in the code.

QUESTION SIX

An old computer program which processes car mileage and cost data accepts
ONE pair of input data items per week. These are the amount of money spent
(pounds sterling) and the price in pence per litre of the petrol bought. The
program cannot accept more than one pair of data items for any one week and
cannot be amended. However, in a week several petrol purchases may be made
at different petrol prices per litre, not foreseen by the original programmers.

Develop the logic and write pseudocode which converts several such pairs of
data items to an equivalent single transaction with an appropriate petrol price in
pence per litre, so that the same volume of petrol would have been purchased.

(12 marks)

This short simple problem required a little thought. As it was clearly not bookwork it got
very few answers. For those candidates with programming skills this question was a
bonus as it could be solved and written down quite quickly

Answer pointers:

Few bothered to plan this answer and wrote code straight away and often made a
fundamental error in calculating the volume of petrol. One candidate wrote that the
original program was too old and had to be amended.

Although not suitable for anything other than very small problems, a significant number
of candidates still used flowcharts. It would be of concern if candidates where being
taught flowcharts as their only design method.

QUESTION SEVEN

Describe how to implement BOTH a stack AND a queue using

a) arrays (6 marks)
b) pointers (6 marks)

This was also popular, as is usual with bookwork questions. But so many thought all
they had to do was state ‘stack is a LIFO structure; queue is a FIFO structure’ with
nothing about implementation. Some candidates also confused the two. Very few had
any ideas about implementing either structure using arrays.

Actual coding of the structures was not asked for, most candidates realised this. Just a
few wrote very long answers with coding, and so spent a disproportionate amount of
time on the question.

Candidates should not waste time on repetition. Something stated clearly by a diagram
does not need a lengthy explanation in words as well. Repetition of an idea with different
wording will not gain any more marks.

For only 12 marks candidates should have realised that the examiners were not looking
pages of answers.

Answer pointers:

Successful candidates described a little of the techniques (arrays are contiguous, and
static; dynamic space allocation is - well - dynamic but needs to be actively managed)
and then identify the construction and use the features of the target data structures; i.e.
building a stack or queue, accessing and inserting to the stack or queue, handling errors
(overflow/underflow)

Stack using arrays

ALl | A2 Aln-1]| A[n]

T Stack head all others move UP one place for addition (push)

AND DOWN one place for removal (pop)
Stack tail
If the array is large a lot of processing is needed for each addition/removal

Queue using arrays

A[l] A2 A[n-1] A[n]
queue queue
head tail
items removed all others move items added here
here <« DOWN one for no other movements
removal

The array must be declared big enough for the maximum number of items ever likely to
be needed.

This can be very wasteful of space. Some systems allow dynamic array declaration but
the overhead is a lot of processing.

Stack using pointers.

Listhead——] 7P TP P /
additions NEW(p) standard procedure
AND creates new members
removals DISPOSE(p) likewise removes
HERE deleted members

Queue using pointers

Listhead——™] — P 1)
old tail new member
old member leaves here
here
/
new tail

QUESTION EIGHT

Describe the operation of a modern file/database access mechanism such as
VSAM or ISAM. Include a description of deletion, updating and insertion of data,
as well as a commentary on its strengths and weaknesses. (12 marks)

This was about the data structures for the indexes that support access to large
databases. Index Sequential Access Method (ISAM) is a hybrid index that tries to deliver
fast sequential processing such as printing of invoices as well as fast direct access to
support, say, telephone or on-line queries.

VSAM is a more modern version of the same thing - Virtual Sequential Access Method.
Answer pointers:

ISAM and VSAM are not, in structure, like arrays but like trees. At each leaf there are
several nodes describing the access into the database.

The nodes are sorted into key order, and distributed across the tree in a way to minimise
the searching time. First fast tree search 'knows' the approximate location because the
keys are pre-sorted. Within a leaf, a scan search is made to locate a particular key.

Insertion can be tricky if a node is already full. Then a new node is created and some
keys unloaded into the new node in order to maintain the sorted-ness of the keys.

Deletion is less tricky unless it is deletion of the last key at a node, when the node can
be removed completely as this will speed up the tree search.

Frequent maintenance is needed, to re-balance the tree and ensure it has equal 'arms’
to avoid excessive tree searching down one or other 'long' arm. This process also
involves redistribution of the keys to maintain capacity for growth without adding of
further nodes, as much as is possible.

QUESTION NINE

You have been asked to plan the development of a website for a local small
business. Describe the documentation you would specify as part of the project’s
deliverables. Give your reasons for the specified documentation and include any
assumptions you make about the needs of the small business. (12 marks)

This was about documentation, but put in the context of a website development for a
small business. Many candidates did not read the question carefully and thought it was
about planning a website development.

Answer pointers:

The answer required the candidates to select the essential material that would be
needed to keep such a simple website operational. Many candidates gave answers that
would keep a mission critical strategic defence network operational.

Update and change - what tools were used and where are the files that constitute the
data for the website.

Maintain and publish - upload procedure, passwords, ISP detalils, etc.

Any coherent awareness of ‘horses for courses' to maintain a website was rewarded.
Answers that needed all the data flow diagrams, and a manual to tell the users how to
use the website, were clearly too detailed.

QUESTION TEN

Discuss the impact of software tools (such as web page generators, and
application generators) on the testing plan of a small to medium sized commercial
software project. Comment especially on the relative merits of black box and
white box testing, the testing plan (whether top-down or bottom-up) and any other
verification and validation activities that you consider important. Give your
reasons. (12 marks)

This question was about testing in the context of tools. Many candidates ignored the
context and gave the book about testing. Other candidates misinterpreted the context of
development tools and discussed the use of tools in general to support the activity of
testing.

The question gave candidates clear hints about the answer expected; the answer was to
discuss three distinct areas; black box versus white box, bottom-up plans versus top-
down plans, and validation and verification.

The question expected candidates to realise that tools were automatic generators, and
the utility of white box testing would be much reduced. Likewise, the functional side of
black box, integration testing and validation testing would be much enhanced leading to
preference for top-down plans and validation events.

Many candidates realised the tools produced executable code automatically, and then
brazenly stated that the programmer needed to white box check this code to ensure its
correctness. Many candidates were even-handed in describing all the issues asked for
and refused to come to any conclusion about what to do where development tools were
being used which was acceptable.

Candidates who discussed tool support for the process of testing were rewarded
according to the scope and coherence of their discussion. Often, the discussion was 'in
parts’ where tools were discussed, then, and quite separately, testing was discussed,
and no integration was made.

Answer pointers:

White box versus black box: functionality increases in importance so black box is the
main testing scheme. White box delivers very little added value because of the
automatic generation nature of the tool.

Test planning bottom-up is not so useful for the same reasons. Top-down is more
productive and useful.

Validation and verification highlights the need for user involvement.

QUESTION ELEVEN

Describe with suitable examples, what the term abstract data type means. Your
answer should consider at least THREE different examples with illustrations of
their use. (12 marks)

This question sought to find out if the candidate knew about the concept of abstract data
types and its application.

Many candidates did know, and got good grades. Other candidates had no knowledge
of this.

Answer pointers:

Essentially, an abstract data type collects together the code and data to implement a
piece of functionality, concealing the implementation details and offering externally only
the 'levers' to manipulate the structure - construction, manipulation, error querying.
Three suitable examples were sought, and the answers were tested for their recognition
that implementation details were not visible whereas construction, manipulation, error
querying had to be available.

QUESTION TWELVE
Computer systems are often described using the metaphor of a set of concentric
(onion-like) rings. State whether this is a useful idea and describe one computer

system in this way to justify your answer. (12 marks)

Candidates were expected to draw on their own experience and to be able argue a
simple case.

Answer pointers:

Some sort of picture model was expected to evince an understanding.

Application

(ON)

Following this, a description of some detailed knowledge that fitted this model was
wanted. For example, BIOS, WINDOWS, ACCESS or UNIX, SHELL, APPLICATION.

