
THE BCS PROFESSIONAL EXAMINATION
Certificate

APRIL 2002

EXAMINER'S REPORT

SOFTWARE DEVELOPMENT

General Comments

A poor selection of questions contributed to some students’ downfall.
Candidates must recognise just what they can and cannot do at the outset.
Moreover, there is no time to write out neat copies of answers first written in
rough - it is often sensible to jot notes down in rough initially but not to re-
write full answers. Those who did this invariably answered too few
questions. Too many candidates again ignored the rubric and did three A-
section questions or six B-section ones. Merely copying out the questions
into the exam book will gain no marks at all.

There are many methods available for stepwise programme development.
Generally the use of flowcharts is inappropriate but was not penalised.
Candidates should compare the time taken to draw a flowchart, especially
with ruled lines, against written pseudocode.

QUESTION ONE

1. A western-style name is held in an array of characters called ‘namestr’; the
full name is delimited by quotes thus:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
‘ P A U L J O H N W O O D S ‘

Forenames Last name

The name is required to be output in the following format:

<Last name in full>, < Initial of first forename >. < Initial of second forename
>. <…...>.

For example, the name

‘PAUL JOHN WOODS’

is required to be printed as

WOODS,P.J.

Develop an algorithm for this process and show adequate development so
that subsequent coding is straightforward. State your target language.

The data has already been validated so you are NOT to deal with error
situations: thus there will always be at least one forename, the space

character will be present between the names and the array is big enough to
hold all the characters. (30 marks)

An unpopular and poorly attempted question. A significant number of candidates
just read in the example ‘JOHN PAUL WOODS’ and printed the appropriate parts
from that. Some marks were given if they showed how to use an array subscript,
but this was a serious misunderstanding of the question.

Those who struggled with this problem and wrote highly complex and involved
answers will be surprised at how elegant and simple the answer really is. (See
below.) The answer hinges on manipulating the subscript of the array ‘namestr’;
any that did not realise this struggled. The usual reason for inadequacy was that
nearly all failed to write an appropriate first algorithm or even tried to write (usually
Pascal) code straight away. Even if some stages are obvious, it is best to start with
an algorithm that looks specifically at how to solve the particular problem and not
wrestle immediately with the nitty gritty of language detail. Far fewer were those
who had too many development stages, and never really got anywhere.
Unfortunately it is a false saving here to try to cut out early stages, assuming they
are obvious, and descend to code immediately.

Answer Pointers

Remember - the question said the data had been validated so there is no need to
incorporate checks on the format.

1st stage

start (first)
find last name

finish (last)
write last name
output ‘,’
From the front of the array
WHILE NOT start of last name DO

write initial of forename
output ‘.’
skip the rest of characters in forename and the

following space
END WHILE

To find where the last name starts and ends in the array ‘namestr’ it is useful to
realise we can start from the right-hand end of the name, marked by the last quote
stored. The subscript can then be decremented until the first space character.
Thus in the example

…………………………’namestr’ subscript (sub) values
………………………………………….
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
‘ P A U L J O H N W O O D S ‘

↑ ↑
← Forenames → space before Lastname

last quote

(It is essential to realise that other names like ‘FREDDY MAITLAND’ will have the
desired parts in different parts of the array.)

We can {find last name} by

skip first ‘quote’ character
using sub as an index

skip characters until last ‘quote’ character found sub → last
decrease ‘sub’ until ‘space’ character encountered sub + 1 → first

The last name can now be output by

FOR sub := first TO last DO WRITE namestr[sub]

Looking again at the example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
‘ P A U L J O H N W O O D S ‘
 ↑ ↑ ↑
↑

first initial subsequent initials ‘first’ (found
above) ‘last’

ALWAYS at 2nd position ALWAYS preceded by ‘space’ character

We can now develop {write initial of forename} thus:

sub := 2
WHILE sub < first DO

WRITE (namestr[sub]);
WRITE (‘.’)
WHILE namestr[sub] <> space DO sub := sub + 1
increase sub by 1 to skip space

END WHILE

We are now in a position to code the developed algorithm. Language-specific
features can now be used; here the target language is a PASCAL like language.

{find last name}
sub := 2
WHILE namestr[sub] <> quote DO sub := sub + 1;
last := sub - 1; { position of LAST character of last name }
WHILE namestr[sub] <> space DO sub := sub - 1;
first := sub + 1; { position of FIRST character of last name }

{write last name}
FOR sub := first TO last DO WRITE (namestr[sub]);
WRITE (‘,’);

{write initials of forenames}
sub := 2;
WHILE sub < first DO

BEGIN
WRITE (namestr[sub]); {write initial }

WRITE (‘.’);
WHILE namestr[sub] <> space DO sub := sub + 1;
sub := sub + 1 {skip space}

END

QUESTION TWO

2. a) Describe a Software Development Kit (SDK) or a Software
Development Environment (SDE) with which you are familiar. Be sure
to explain the purpose of the software that the kit or environment is to
produce. (12 marks)

b) What generic elements or features should be present in a good SDK or
SDE, and why? Be sure to link your answer to types of software
development practice that you know about. (8 marks)

c) What do you think is driving the changes in software development

practice? How will these changes be reflected in new SDK or SDE

products? Make your reasons plain. (10 marks)

Answer Pointers

a) The description should address functionalities and applications of any SDK/SDE
known to the candidate. This can range from environments to develop
embedded microprocessors through to dynamic debug environments for
production and test of 3GL and 4GL programming or any other descriptions that
show a clear understanding of the specifics of a support environment for a
particular software development process.

b) This part of the question asks the candidate to identify higher-level activities with
the general development process. It expects the candidate to use the specific
descriptions of part (a) above.

Functionalities might include such things as
• Test environments – set value, trace values, start and stop points
• Coding environments – on-screen syntax aids, libraries of features for

inclusion and use
• Linking tools that create an executable module from part-compilations

or part-assemblies
• Analysis tools that identify calling sequences and execution paths
• Pretty-print tools that structure code for readability and maintenance
• On-screen HCI type drag-click actions that mimic or model the build

process e.g. MS-Access ‘form design’ screen

c) This is a ‘differentiator’ question, looking for answers that appreciate the craft
nature of programming and the economic imperative to obtain more productivity,
more accuracy, more ‘productionising’. Craft programming is still evident in the

re-use (libraries) or auto-debug (testing harnesses) or productivity-aid (on-line
syntax assistance).

Expected changes to implement ‘productionising’ are things like ‘standard parts’
and methods of binding standard parts for interchangeability, ideas of architecture
styles such as patterns or the OO idea of classes and instances.

QUESTION THREE

3. A key and a data item are stored in pairs in the following array

integer array dataset(1:2;1:n)

such that any one pair in dataset might look like dataset(key-x, value-x).
value-x is never zero so it can be used as a test value.

A search algorithm is proposed as follows:

integer function Afind (input integer: dataval, range);
begin

comment dataset is a global two-dimensional array 1:2 by 1:range
comment This algorithm determines whether 'dataval' value is in dataset.
comment ‘range’ is the number of pairs in dataset.
comment If ‘dataval’ is found, the return value of Afind gives the associated

key
comment If ‘dataval’ is not found, the return value of Afind is zero

local integer key, pos;

key := 0;
pos := 0;
while key = 0 and range > pos do
begin

pos := pos + 1;
if dataval = dataset(2,pos) then key := dataset(1,pos)

end;

Afind := key;

end function Afind;

a) Given the following table of keys and values representing dataset:

12 4536
17 8723
9 1625
16 9165
14 1948
18 1984
10 7125
11 2638
8 5128

15 2584

Dry-run the execution of Afind (9165, 10). What is the value returned by
Afind? (15 marks)

b) Describe the expected performance of the algorithm, making plain any
assumptions you need to make. (5 marks)

c) What features of the data might significantly change your estimate of
performance? (10 marks)

Answer Pointers

Afind is a scanning algorithm, looking serially for the data until it finds it. The key in
this case is the sum of the first three digits in the datavalue.

a) Dry run Afind (9165,10). !0 points available for clear sense of sequential
searching.

Dataval Range Pos Dataset index=
(2,pos)

Dataset(2,po
s)

Key
@(1,pos)

9165 10 0 N/a N/a
1 (2,1) 4536
2 (2,2) 8723
3 (2,3) 1625
4 (2,4) 9165 16

b) Expected performance is Big-O(n) meaning performance is of the order of the
number of cells in the search space. This measure of performance is technology-
independent, concentrating wholly on the algorithm.

Specific notation of Big-O is not necessary if clear sense that performance is
directly dependent on the size of the space to be searched because the
scanning is linear. Marks were awarded if performance is quoted with concept of
(1/2n) indicating some kind of ‘averaging’ in the analysis of the candidate.

c) Marks here were for candidates who recognise the scanning algorithm and can
address its known pitfall in their answers.

It is possible that candidates might offer features that improve performance.
Where these answers do not imply or require a change of algorithm they will be
evaluated sympathetically. Otherwise such answers will be marked at face value
for the insight they show into the scan-search algorithm.

QUESTION FOUR

4. A PC-based stock enquiry system is to be used in a works chemical store to
facilitate enquiries for specific chemicals and to expedite stocktaking. Each
chemical has a record structure, part of which is shown below:

CHEMICAL.
NAMES.

Chemical-name. 30 characters.
Industrial-name. 30 characters.
Short-name. 10 characters.
Catalog-ref. 10 characters.

LOCATION.
Row-number. 1 character and 1 digit.
Aisle-number. 1 character and 1 digit.
Shelf-number. 1 digit.

HAZARDS.
Hazard-Number. 1 digit.
Classification. 10 characters.
Poison-Rating. 10 characters.

a) Specify this record structure in an appropriate programming language.
State clearly which language you are using. (6 marks)

b) Specify a file or table to hold up to 1,000 such records. (4 marks)

c) Write pseudo-code to handle a series of enquiries for different chemicals.
An enquiry may use any of the entries under ‘NAMES’. For those whose
entries are found, the data stored under ‘LOCATION’ is to be printed. If an
entry is not found, ‘NOT AVAILABLE’ is to be printed. If the ‘Hazard-
Number’ is greater than 3, ‘CHARTERED CHEMISTS ONLY’ is also to be
printed. If the entry in ‘Poison-Rating’ is ‘SEVERE’, ‘RESTRICTED
ACCESS’ is also to be printed.

After each enquiry the user is asked whether he/she wishes to terminate or
continue with another enquiry. When the last enquiry has been processed,
the number of successful and unsuccessful enquiries is to be displayed. (20 marks)

A quite popular and moderately well done question.

(a) Only a few reflected the given structure well in the code. Most had
repeated character declarations, even for items which were obviously
numeric. Use of short type names is satisfactory here as they do save time
in this kind of question.

(b) Few realised what was wanted here. A declaration of the file/table structure
and a brief indication of how to populate it were needed for full marks. If
only two marks are available, students should realise that a page of code is
not expected.

(c) This can be done with little development, so it was quite well done. Scope
of long loops must be indicated. Earlier declarations need not be repeated
here.

Answer Pointers

(a) An appropriate record structure for the given record structure in PASCAL :

TYPE longstr : PACKED ARRAY [1..30] OF CHAR;
shortstr : PACKED ARRAY [1..10] OF CHAR;

chemical = RECORD {outer record}

names = RECORD {1st inner record}
chemical_name,
industrial _name : longstr;
short_name,
catalog_ref : shortstr

END;
location = RECORD {2nd inner record}

row_number,
aisle_number : ARRAY [1..2] OF CHAR;
shelf_number : shortint

END;
hazards = RECORD {3rd inner record)

hazard_number : shortint
classification,
poison_rating : shortstr

END;
END {overall record structure}

(b) There were many possible answers to this depending on choice of language.
Both a declaration of the file or table, and an indication of how to populate were
expected. Thus in PASCAL:

datafile : FILE OF chemical;

WHILE NOT end_condition DO
WITH chemical DO

WITH names DO READ(chemical_name, industrial_name,
short_name, cataog_ref)

END;
WITH location DO READ (row_number, aisle_number, shelf_number)
END;
WITH hazards DO READ(hazard_number, classification,

poison_rating)
END;

END;

(c)

set counters to zero (fail_ct = success_ct = 0)
REPEAT {for each enquiry}

INPUT type of enquiry [1,2,3,4] → enq
CASE enq OF

1 : chemical name enquiry . SEARCH file matching
the

2 : industrial name enquiry . input enquiry to
appropriate

3 : short name enquiry . record field (match may
4 : catalog enquiry . or may not be found)

SET found = true/false depending on CASE
IF found THEN

BEGIN
increment success_ct
WRITELN (location details from chemical record)

IF hazard_number > 3 THEN WRITELN (“chartered chemists only”)
 IF poison_rating = “severe” THEN WRITELN (“restricted access”)

END
ELSE {not found}

BEGIN
increment fail_ct
WRITELN (“not available”)

END
WRITELN (“another enquiry?”)
INPUT [1 = yes 0 = no] → ind

UNTIL ind = 0
{program termination}
WRITELN (success_ct “ successful enquiries; ” fail_ct “ failed enquiries”)
END.

QUESTION FIVE

5. Using an appropriate programming language:

a) Define a data structure for one element of a linked list to contain a string of
3 characters as its data item. (2 marks)

b) Write code to read in and create a linked list of these elements where each
new member is added to the head of the list. Input is terminated by ‘***’. (6 marks)

c) Write a function/procedure named ‘length’ which counts how many
elements are present in the list.

State the programming language you have used. (4 marks)

Answers divided almost completely into two categories:
a ‘small group’ who knew this material well and gained a high mark
a ‘large group’ who knew very little, especially pointer manipulation

The latter group usually wrote from memory on learnt examples, which
usually did not answer the question. Others wrote about stacks and queues,
‘pop’ and push’ functions which were not mentioned in the question.

Clearly answers coded in a stated language were expected here, languages
are decidedly different concerning pointers.

Students should constantly ask themselves ‘Is what I am writing answering
the question?’
Irrelevant details from memorised programs do not impress the examiner.

Answer Pointers

(a) TYPE ptr = ↑node;
node = RECORD

data : string; (or ARRAY [1..3] OF CHAR);
next : ptr

END;

(b) VAR astring : string; p : ptr; head : ptr;

BEGIN
WRITE (“list set up in inverse input order”);
head := NIL;
READLN(astring);
WHILE astring <> ‘***’ DO

BEGIN
NEW(p);
p↑.data := astring;
p↑next := head;
head := p;
WRITELN (“input next string… *** to finish”);
READLN(astring)

END
END;

(c) FUNCTION length (place : ptr) : INTEGER;
VAR ct : INTEGER;

BEGIN
ct := 0;
IF place = NIL THEN WRITELN (‘list empty’)
ELSE

WHILE place <> NIL DO
BEGIN

ct := ct + 1;
place := place↑.next;

END;
END {IF }
length := ct

END {length function }

QUESTION SIX

 6. Write a function ‘pwr (p, n)’ which returns the integer value of ‘p’ raised to the
integer power ‘n’.
a) using recursion (6 marks)
b) using iteration (6 marks)

A popular question. Too many candidates used functions without any
parameters and had prompts for ‘o’ and ‘n’. No type was generally
associated with the function itself. Those who rely exclusively on memory for
this kind of question should check it over that some essential stage (like the
recursion call) has not been forgotten. A few wrote essays on recursion
and/or iteration, which were definitely not wanted.

Answer Pointers

p to the power n or (p ↑ n) by

(a) recursion

FUNCTION pwr (p , n : INTEGER) : INTEGER;

BEGIN
IF n = 0 THEN

pwr := 1 {termination : must be present}
ELSE

pwr := p * pwr (p , n-1) {the essential recursive call }

END;

(b) by iteration

FUNCTION pwr (p , n : INTEGER) : INTEGER;
VAR ct, temp : INTEGER;

BEGIN
IF n = 0 THEN

pwr := 1
ELSE

BEGIN
temp := 1;
FOR ct := 1 TO n DO temp := temp * p;
pwr := temp

END
END

QUESTION SEVEN

 7. Develop an algorithm for a function ‘gentemp’ which converts temperatures
between the two commonly used scales, Celsius and Fahrenheit. The
function has two parameters: ‘namescale’, being ‘C’ when ‘Celsius’ is the
input temperature, or ‘F’ when a ‘Fahrenheit’ temperature is input. Any other
entry is an error condition. The second parameter is the temperature (real
number) which is to be converted. Use the relationship below to inter-convert
the temperatures. (12 marks)

F - 32 = 9
C 5

Many did not write a function here, but instead had a simple interactive
program that asked for the code letter and temperature value to be input
interactively. Again candidates were weak on parameters.
Others lost marks for using the wrong formula in the code, or the ‘C’ and ‘F’
formulae interchanged. Both of these were penalised. Simple development
even for straightforward problems is desirable. The skill is in knowing how to
do the right amount of it, not in leaving it out to save time.

Answer Pointers

The given formula F - 32 = 9 has to be transformed into versions explicit for
calculating

 C 5 ‘F’ and ‘C’ separately:

Thus 5 (F - 32) = 9 * C C = (F - 32) * 5 / 9 (expression
1)

and F - 32 = 9 * C / 5 F = 9 * C/ 5 + 32 (expression
2)

Algorithm:

The function ‘gentemp’ is supplied the value to be converted (real, not integer) and
a single character which is ‘C’ if this value is on the Celsius scale, ‘F’ if it is on the
Fahrenheit scale. Thus

IF scale = ‘C’ THEN
calculate F-value according to expression (2)

ELSE
IF scale = ‘F’ THEN

calculate C-value according to expression (1)
ELSE

error message

Even an algorithm this simple is worth writing as it makes clear which formula is to
be used where in the code.

FUNCTION gentemp (scale : CHAR; t : REAL) : REAL;

BEGIN
IF scale = ‘C’ THEN

gentemp := 9 * t / 5 + 32 {returns Fahrenheit
temperature}

ELSE
BEGIN

 IF scale = ‘F’ THEN
gentemp := (t - 32) * 5 / 9 {returns Celsius

temperature}
ELSE

WRITELN (‘incorrect scale indicator’)
END

END;

QUESTION EIGHT

 8. a) For each of the following file organisations, outline two business
applications for which the file organisation is suitable.

i) Sequential file organisation (3 marks)
ii) Random file organisation (3 marks)

b) Sketch the index structure for each of these file organisations and
describe how insertions, deletions and updates are implemented by this
indexing structure. (6 marks)

Answer Pointers

a) A business purpose for sequential file organisation is typically batch-oriented
processing such as payroll, transaction recording and invoicing/billing.

A business purpose for random file organisation is typically real-time processing
such as telephone enquiry handling and on-line lookup/bookings

b) A simple sketch of the index structure was all that was required.

QUESTION NINE

 9. a) Web pages often offer a 'frames' and a 'no frames' option. Explain
what these terms mean, and why they are important. (4 marks)

b) Sketch the graphical user interface (GUI) for a 'frames' web
presentation, and give reasons for two of the GUI features you have
included. (8 marks)

Answer Pointers

a) Frames and No-Frames are GUI layouts that are supposed to aid navigation
within a website.

The basic unit of web access is ‘the page’ and frames, multiple windows or pages
on a screen, seem to contradict the web’s initial simplicity.

b) Two structures and reasons similar to the following are acceptable

Print: a mechanism to produce ‘printer-friendly’ material well-separated from other-
frame-based material on-screen.
Home: always have a mechanism to return to the primary URL; avoids being
‘trapped’ without an effective ‘back’ button.
Bookmarking: a mechanism to capture URLs
NO-FRAMES switch for older browsers

QUESTION TEN

10. You have been asked to test an interactive web site that has been already
implemented. The web site can capture clients' names and email
addresses (when they complete answer-back forms) as well as offering to
known clients facilities such as downloads of specialist advice relevant to
your employer's main business area.

Briefly describe FOUR issues relevant to this kind of web presentation
where the testing must be planned and completed satisfactorily before
going 'live'. (12 marks)

Answer Pointers

An interactive website should have the following functions properly operating.

• Copyright has been obtained on all materials in the website
• Hot links all working
• Domains and trade marks are used legally
• Companies Act compliance for identification of owner/operator
• Suitable for access on a variety of browsers
• ‘Clean’ use of meta-tags, no misrepresentation as to contents of website
• User consent for acquisition of personal data (capturing clients' emails and

holding a database of clients’ details)
• Specialist advice checked with lawyers for defamation, liability and indemnity.

QUESTION ELEVEN

11. Describe, with diagrams, the operation of a look-up table and identify an
application that is particularly suited to this form of search and retrieval.
Give reasons for your choice. (12 marks)

Answer Pointers

The example of use must be a relatively stable, non-changing dataset e.g. a stable
phone-list, or rental rates for a car hire firm. What is not appropriate is some
dynamic population of data, for then the prepared key and index mechanism with
collision avoidance won't work at all well. For example, a set of customers, a set of
orders, or a set of bookings.

The key K is some identifier of the desired data (DD). Suppose L is the
table(1:n;1:2).

Then the pointer L(K, 2) is what points to the DD. Generation of K is either directly
from the DD or some previously-coded K derived by transformation from DD.

A null pointer, L(K, 2) = NULL, means no data, i.e. DD does not exist in this
scheme.

A non-match, K <> L(K, 1), means at least two DD elements have the same
transformation; i.e. the same K.

Strategies to combat this are broadly to live with it or avoid it. Live with it means
implementing some form of scan to find the true presence/absence of K. Common
techniques are sequential scanning or some hybridised, randomised skip. It is
important to prepare the table for the set of DDs to be looked-up, so that the
collisions are anticipated and the avoiding/re-search mechanism works with
acceptable performance.

Avoid it means find another way that has far fewer collisions when DD is
transformed into K.

QUESTION TWELVE

12. Write brief notes on each of the following:

a) independent compilation (4 marks)
b) formal and semi-formal specification of algorithms (4 marks)
c) search engines (4 marks)

Answer Pointers

a) independent compilation should contain compilation by parts, pieces later to
be linked together, productivity from multiple module production, and
sequence dependencies of compilation for interface checking should be
mentioned.

b) formal and semi-formal specification of algorithms: the formal approach is
more aimed at an algebraic framework of verifiable reasoning about the
behaviour of the modelled algorithm. Tools and notations of note are Z, B-
Tool, Vienna Development Method (VDM).

The semi-formal specification is associated with diagrammatic models of
behaviour and functionality, such as OO diagrams, ERDs, state-transition
diagrams and data flow diagrams. The aim of these specifications is to
capture the desired functionality for programmers to implement.
Retrospective walkthroughs and compliance tests are conducted as part of
the verification activities.

c) Meta-search is the name given to a search engine that uses several other
search engines to make its searches for it. In addition, a meta-search engine
often identifies which other search engines it is using and keeps a database
record of searches performed and results found. Some meta-search
engines update the set of real engines used as part of normal processing.

