
THE BCS PROFESSIONAL EXAMINATION
Certificate

April 2000

EXAMINERS’ REPORT

Software Development

General Comment
A large number of candidates showed poor examination technique. Many candidates did not seem
to take into account the weights given to the questions in the two sections. Many, in fact, spent
more effort on questions in section B (12 marks) than they did on questions in section A (30 marks).
This could indicate that while the candidates were conversant with the basic principles of the
subject area, they lacked deeper comprehension of the material. There were a number of examples
where candidates appeared to identify a certain phrase (for example, user interface) and then write
everything they knew about the phrase rather than read the question carefully and concentrate on
the what was actually requested (for example, differing requirements of user interfaces for different
users).

Section A

Question 1.

Marking Scheme

a) A brief method of demonstrating the changes in the contents of the important memory
locations is essential here. A possible way of expressing the dry run is :-

line no. temp decnum rem octnum digit instruction
 1 0 ? ? ? ?
 2 0 123 ? ? ? READ
 3,4 0 123 3 ? ?
 5 3 123 3 ? ?
 6 3 15 3 ? ?
 7 3 15 3 ? ? false->3
 3,4 3 15 7 ? ?
 5 37 15 7 ? ?
 6 37 1 7 ? ?
 7 37 1 7 ? ? false->3
 3,4 37 1 1 ? ?
 5 371 1 1 ? ?
 6 371 0 1 ? ?
 7 371 0 1 ? ? true->8
 8 371 0 1 0 ?
 9,10 371 0 1 0 1
 11 371 ,, ,, 1 1
 12 37 ,, ,, 1 1
 13 37 ,, ,, 1 1 false->9

 9,10 37 ,, ,, 1 7
 11 37 ,, ,, 17 7
 12 3 ,, ,, 17 7
 13 3 ,, ,, 17 7 false->9
 9,10 3 ,, ,, 17 3
 11 3 ,, ,, 173 3
 12 0 ,, ,, 173 3
 13 0 ,, ,, 173 3 true->14
 14 ,, ,, ,, ,, ,, output 173

As only 5 marks were allocated to the dry run, it was essential that candidates did not spend a
disproportionate amount of time on it. The column method shown above is quicker than writing out
in longhand what happens at every stage. It is recommended that only changes in contents of
registers are written out; there is no need to repeat unchanging values, as is shown above for clarity.
Dittos (”) are acceptable provided their meaning is clear.

b) An alternative style of dry run is shown. This is more informative, but invariably takes longer to
write out.

line result
 1 temp = 0
 2 decnum = 16
 3 REPEAT UNTIL decnum = 0 (false)
 4 rem = decnum MOD 8 = 0
 5 temp = 10 * 0 + 0 = 0
 6 decnum = decnum DIV 8 = 2
 7 UNTIL decnum = 0 (false)
 3 REPEAT
 4 rem = 2 MOD 8 = 2
 5 temp = 0 + 2 = 2
 6 decnum = 2 DIV 8 = 0
 7 UNTIL decnum = 0 (true)
 8 octnum = 0
 9 REPEAT
10 digit = 2 MOD 10 = 2
11 octnum = 0 + digit = 2
12 temp = 2 DIV 10 = 0
13 UNTIL temp = 0 (true)
14 octnum = 2
15

The choice of value for ‘multiple of 8’ is important. Values higher than 16 just add more cycles
without revealing anything more informative about the result. (Those candidates who chose values
such as 80 or 120 just made a lot of work for themselves.)

The output octal number should be 20, not 2 as produced. This happens because leading zeros are
lost before the first reversed digit is stored. Very few realised this and knew how to correct the
algorithm.

There are several amendments; the most plausible is to set ‘temp’ to 1 at the start, not 0, in which
case the leading zeros are stored following the 1. An amendment is then required to line 13 :
UNTIL temp = 1.

c) An acceptable PASCAL program derived from the corrected algorithm follows.

marks for line (or equivalent)
PROGRAM decconv(INPUT,OUTPUT);
VAR decnum, temp, rem, octnum : INTEGER; 3
BEGIN
 temp := 1;
 WRITELN(‘input decimal number’); 2 [require to have a prompt]
 READ(decnum);
 (* get reversed octal number *) 2 [comment expected]
 REPEAT

rem := decnum MOD 8;
temp := 10*temp + rem; 3
decnum := decnum DIV 8

 UNTIL decnum = 0;
 octnum := 0;
(* reverse digits to get octal number *) 2 [comment expected]
 REPEAT

digit := temp MOD 10;
octnum := 10 * octnum + digit; 3
temp := temp DIV 10

 UNTIL temp = 1;
 WRITELN (‘octal equivalent =’; octnum:3) 2
END.

Very few students included appropriate comments. It should be reinforced that the purpose of
comments is to make clear the meanings of lines, or groups of lines, where this is not obvious from
the code. Conversely, a few seriously over-commented their code. These extra comments are often
superfluous as they add little to the meaning of the code.

Question 2

Marking Scheme

An acceptable data structure (for example, in Pascal) would be

type element = RECORD
name : PACKED ARRAY [1..15] OF CHAR;
symbol : PACKED ARRAY [1..2] OF CHAR;

{enumerated type also possible here}
relmass: REAL;
atnumber: 1..110; {INTEGER also allowed, but subrange better as

‘atomicnumber’ is never negative}
eltype: BOOLEAN {‘true’ for a metal, ‘false’ for a non-metal}

END;

5 marks were awarded for the data structure.

A possible algorithm would be

1 Declarations
2 OPEN FILE for reading
3 initialise variables
4 INPUT lower, upper for range of atomic numbers
5 VALIDATE lower, upper
6 LOOP WHILE NOT End-of-file (datafile) AND valid range DO
7 READ item
8 IF atnum >= lower AND atnum <= upper THEN
9 BEGIN
10 IF metal THEN
11 increment metal-count
12 ELSE increment non-metal-count
13 END
14 ENDLOOP
15 OUTPUT (‘metals’, metal-count, ‘ non-metals ‘ non-metal-count)

Development
2. This will be strongly language-dependent.
4.1 test if lower <= upper
4.2 test if lower >= 1 AND <= 110
4.3 test if upper >= 1 AND <= 110

Program code (17 marks) approx. mark allocation

PROGRAM ctelements (INPUT, OUTPUT, eldata);

CONST
lower_bound = 1,
upper_bound = 110;

TYPE element = RECORD {as earlier – NO need to write it out again}

VAR eldata : FILE OF element;
item : element; 2
metalct, non-metalct, lower, upper : INTEGER:
valid_range : BOOLEAN;

BEGIN
WRITELN(‘count program for chemical element data’);
RESET(eldata); (*appropriate code to open file *) 2

(* initialise variables *)
metalct := 0; 2
non-metalct := 0;
valid_range := true;
WRITELN(‘input lower value of range’); READ(lower); 2

WRITELN(‘input upper value of range’); READ(upper);
(* validate range values *) 4

IF NOT (lower <= upper) THEN
 BEGIN

WRITELN(‘invalid range - lower value grater than upper value’);
valid_range := false;

 END
ELSE
 BEGIN

IF NOT ((lower >= lower_bound) AND (lower <= upper_bound)) THEN

 BEGIN
WRITELN(‘lower range value outside set limits’);
valid_range := false;

 END;
IF NOT ((upper >= lower_bound) AND (upper <= upper_bound)) THEN
 BEGIN

WRITELN(‘upper range value outside set limits’);
valid_range := false;

 END;
 END;

(* process file of data *) 4
WHILE NOT EOF(eldata) AND valid_range DO
BEGIN

READ(eldata, item); (* get item from file into single record *)
IF (item.atnum >= lower) AND (item.atnum =< upper) THEN
 BEGIN

IF item.eltype THEN (* corresponds to metal *)
metalct := metalct + 1

ELSE non-metalct := non-metalct + 1
 END;

END;
(* report results *) 1
WRITELN (‘there were’ metalct:2, ‘ metal and’ non-metalct:2, ‘non-metal elements present’)
END.

Few students gave an initial algorithm and very poor development was typical. The question
specifically asked for the development to be shown. Omission of the development was therefore
penalised.

Small syntax errors in answers were not penalised. Marks were awarded primarily for the right type
of instructions and comments in the correct place rather than absolute syntactic correctness.

Question 3

Marking Scheme

The first half of this question concerned the factors that should be taken into account when
purchasing software and the relative importance of these factors. A good answer stated the relevant

factors that should have been taken into account when purchasing THIS software, coupled with a
short discussion explaining each factor and discussing how important it was and why. Just
providing a list of short bullet points (for example, 'cost') did not gain many marks. The question
provided a comprehensive overview of what was being supplied and its application areas. Few
candidates chose to tailor their answer to this and would have given exactly the same answer to a
question along the lines of "What are the factors influencing your purchase of any software?".
Some candidates even discussed points which were explicitly excluded; for example, they discussed
the problem of not having source code listings. Again, when it came to the relative importance of
the various factors, many candidates went through their list simply assigning low, medium or high
importance to each of the points they had discussed, without explaining why they had assigned that
particular priority.

The second half of the question was, in general, answered much worse than the first. The question
asked for a test plan to be designed, yet many candidates did not include a test plan in their answer.
Indeed, to many this seemed the perfect excuse to give a list of testing strategies with no discussion
about the merits of each. The question specifically mentioned black and white box testing. Quite a
few candidates chose to ignore that part of the question and some managed to get the definitions of
the two the wrong way round. A full answer should have contained:

• A short discussion regarding when black box and white box testing is appropriate (possibly
with a definition of each of these two types of testing strategies).

• A detailed test plan for the implementation of each task (again note, "for the implementation
of each task") including whether they were black or white box tests.

• A brief dialogue regarding the reasons why the test plan was constructed in that way.
• The reasons why the tests were included.

Question 4

Marking Scheme

The first part of this question (15 marks) asked candidates to show their knowledge of current
application software development tools in a PC environment. So, for example, a full (and accurate)
description of a CASE or any IDE would have earned high marks. The second part of the question
(15 marks) was looking for candidates' appreciation of how computing is developing; an awareness,
for example, of the growing trend towards internet based solutions (and therefore the need to
include support for this in development environments) or the need to include support for distributed
teamwork in development tools.

In general this question was answered badly for several reasons. Many candidates, for example,
appeared not to read the question properly. Either they provided a list of development tools but
with no description (and the question specifically said describe the tools) or they described
application software, not the tools required to develop it. Other candidates seem to have very little
feel for the tools currently in use in a PC environment (again, this may point to a misreading of the
question or perhaps indicates that candidates are selecting the wrong questions to attempt). Often
only text editors, compilers and debuggers were discussed. Whilst these are all very necessary for
software development, it does show a limited appreciation of tools available in a modern PC
environment. Some described items which were not software development tools; for example
prototyping or RAD - these are methods or techniques which make use of tools, but are not tools in
their own right. Finally, when candidates looked to the future for these tools, they often just stated
that they would cost less, be more powerful and more efficient. Answers like this are limited as they

do not display any thought or feel for the way in which applications (and therefore their
development tools) are changing and will need to change over the next few years. A regular scan
through current computing magazines would provide a lot of this information. One approach would
have been to look at where current development tools are deficient and how current development
requirements could be better addressed; for example, a move towards supporting cross platform
projects and distributed solutions, or better integration of all aspects of the software development
life cycle.

Section B

Question 5

Marking Scheme

A linked list can be used where a variable number of items is to be used in the data structure. If an
array is used then nearly always a fixed block of memory must be assigned. If more items need to
be put into an array than are foreseen then a ‘boundary violation’ will occur. If there are far fewer
items, memory will be allocated but not used. With a linked list, only the memory actually needed
for the items is used. With this data structure, it is easy to insert or delete single items from the list;
no other items are moved. Insertion or deletion from an array requires all the others to be moved up
or down. (6 marks)

An array could be used when the maximum number of elements is known and when random access
to individual members is required, for example. This is easily gained by computing the subscript
value for Member[subscript]. Thus sorting or searching operation are more efficient when an array
is used. (6 marks)

Question 6

Marking Scheme

A compiled program is a block of executable code produced from source code by a compiler. It is
not changed during a program run. Any syntactic source code errors are detected at the outset and
reported on an error listing. If there are many compile time errors, propagation errors may be
produced by early errors and likewise reported. This can make correction of errors later on in the
source code difficult. This process is efficient if many runs of the program are required. (6 marks)

An interpreted program is run directly from the source code, each line (sometimes segment) of the
code being directly translated as it is reached, before being executed immediately. Thus an error is
reported individually, and execution stops where it occurred. Values of all the variables are directly
available, unlike a compiled-program execution. Hence improved diagnostics are often available.
This process generally results in repeated translation of the same line of code, which causes far
slower execution speed than for compiled programs.

Often this process is used for small programs which can be developed interactively, hence it is often
used for teaching. (6 marks)

Question 7

Marking Scheme

This was a very popular question. However, despite the question's popularity, many candidates
scored very badly, showing little understanding of CASE tools and object-oriented programming
(the two subjects of the question).

The first half of this question asked for brief notes on CASE tools. Specifically the question was
looking for the candidates' understanding of what CASE tools are and how they might be used. As
with the answers to some of the other questions, many candidates simply wrote down a list of
features. Brief notes explaining what a CASE is, the purpose of CASE tools and how they are used
would have added greatly to the simple list. (6 marks)

The second half of the question asked for brief notes on object-oriented programming. A large
number of candidates insisted that this type of programming had to be visual, some went on to say
that its only use, therefore, was for creating graphical user interfaces. A very high percentage of
the candidates did not understand the concepts of objects and classes which is, of course,
fundamental to this paradigm. Again, a list of unexplained (usually one word) features such as
'classes', 'polymorphism' and 'inheritance' was only part of what was required. A full answer might
include a brief overview of the paradigm, definitions of a few key terms and an example. (6 marks)

Question 8

Marking Scheme

Simple diagrams with a sentence or two of narrative were sufficient for this question. In particular,
candidates were expected to state the order in which the pointers were changed and show how many
temporary pointers were required.

Eight marks were awarded for the general case of swapping the elements with two marks each for
correctly commenting on the case when one of the elements was either the first or the last element.

Question 9

Marking Scheme

A popular question with the candidates but often poorly answered. The question asked candidates to
consider two very different types of PC user and to discuss whether they need the same user
interface or not. This was NOT an invitation to write down everything about interface design
despite what some candidates seemed to think. The question required candidates to look at the
requirements of the two types of user (inexperienced and professional) and show how user interface
design principles apply to each. In order to draw a conclusion, they could then look at the amount
of overlap between the two interfaces and in that way, determine whether or not two different
interfaces were needed. Surprisingly, some candidates felt that for professional users, the interface
was not important and so no interface design principles applied!

Question 10

Marking Scheme

Despite being very much a book work question, this question was very poorly answered. It was
disappointing to see how little candidates knew. For example, when discussing data abstraction,
many candidates confused it with information hiding and thought it was something specific to
object-oriented techniques. Others described an example of an abstract data type (e.g. stack) but
with no discussion on the process of data abstraction or why it was an abstract data type.

The candidates knew most about independent compilation, although a few did think it meant
compiling programs without human intervention.

Very few candidates seemed to know much about software version control - only a handful of the
several hundred answers mentioned change control or change management. Version control is not a
method to avoid software piracy or a technique to prevent certain sectors of industry getting hold of
particular software packages - definitions given on more than one answer. Marks were not given if
the answer focussed only on the version numbers given to software (e.g. Visual Basic 6) unless
reasons were given for why version numbers are needed and how they are used to ensure software
integrity during and after maintenance/development.

Question 11

Marking Scheme

The first part of the question required little more than bookwork to describe a diagrammatic tool
used to help design software and the second part required some reflection about the strengths and
weaknesses of the tool. Some candidates answered this very well. However, a great many either
had not read the question properly or did not understand what a diagrammatic software design tool
is. For example, many candidates described the waterfall method (an approach to the software
development life cycle), prototyping (a technique for developing software), project management
tools, interactive debuggers and even programming languages. For those answers that described a
diagrammatic design tool, many candidates did poorly on the discussion about its strengths
weaknesses. Candidates need to be careful when commenting on the strengths and weaknesses of
an approach or tool not to assign a weakness to that approach or tool when it was not designed to
handle a particular aspect. For example, it is acceptable to comment that a Data Flow Diagram
(DFD) does not show the relationships between the entities and that this aspect is handled by Entity
Relationship Diagrams. This is not really a significant weakness of a DFD as they were not
designed to handle this aspect of a system. It is not reasonable to criticise a tool for not doing
something that it was never intended to do.

Question 12

Marking Scheme

a) stacks and queues (6 marks)

Both stacks and queues are dynamic data structures

 STACK QUEUE
in out in
 ------ ------
 ------ ------
 ------ ------
 ------ ------ out
last in, first out structure first in, first out structure
[LIFO structure] [FIFO structure]

This section was generally well answered. Some students did waste time writing implementations in
code which was not required.

b) cohesion and coupling (6 marks)

cohesion concerns the relationship between data items within a particular module. It represents how
tightly bound the internal elements of a module are to each other. It gives the designer a measure of
whether elements belong in the same module. There are several levels of cohesion – thus
coincidental, logical, procedural, sequential cohesion.

coupling measures the relationship of data between distinct modules. It thus attempts to capture how
strongly two different modules are inter-connected. Generally coupling should be minimised.
For further details see Pankoj Jalote ‘An integrated approach to Software Engineering’.

Again this part was well answered which was pleasing to see as it is an important part of Software
Engineering. Many students however spent far too long on this, writing detailed essays, as if it were a
complete section A question, not half of a section B question, and worth only 6 marks. Candidates
should realise that only 3 marks were available for cohesion and coupling individually, and judged the
time accordingly.

