XLRI - Test

Answers and Explanations

1	d	31	c	61	C	91	b	121	d	151	c	181	a
2	d	32	b	62	C	92	C	122	c	152	b	182	a
3	C	33	C	63	b	93	a	123	d	153	b	183	C
4	C	34	a	64	C	94	C	124	a	154	d	184	b
5	C	35	d	65	a	95	d	125	a	155	a	185	d
6	a	36	d	66	C	96	d	126	C	156	d	186	d
7	b	37	a	67	d	97	b	127	C	157	C	187	d
8	d	38	c	68	c	98	c	128	c	158	a	188	b
9	c	39	a	69	d	99	c	129	b	159	C	189	b
10	b	40	c	70	c	100	b	130	d	160	b	190	a
11	d	41	C	71	b	101	b	131	c	161	a	191	a
12	c	42	c	72	d	102	d	132	b	162	d	192	b
13	a	43	b	73	d	103	a	133	a	163	b	193	C
14	a	44	c	74	b	104	a	134	b	164	d	194	b
15	c	45	a	75	d	105	C	135	d	165	d	195	b
16	b	46	a	76	b	106	C	136	a	166	a	196	c
17	d	47	d	77	d	107	a	137	C	167	b	197	C
18	b	48	b	78	a	108	a	138	c	168	b	198	c
19	a	49	c	79	C	109	a	139	a	169	b	199	C
20	d	50	b	80	b	110	a	140	a	170	b	200	a
21	a	51	d	81	C	111	b	141	a	171	b		
22	a	52	C	82	d	112	C	142	a	172	c		
23	b	53	C	83	b	113	b	143	a	173	b		
24	C	54	C	84	a	114	d	144	b	174	a		
25	d	55	a	85	b	115	c	145	C	175	a		
26	a	56	a	86	b	116	a	146	C	176	b		
27	d	57	c	87	d	117	b	147	b	177	b		
28	C	58	d	88	b	118	a	148	d	178	c		
29	a	59	C	89	b	119	b	149	b	179	b		
30	b	60	b	90	C	120	d	150	b	180	b		

1. d (b) fits in A, (c) fits in D and (d) fits in A, B and C.
2. d (a) fits in D, (b) fits in B, (c) fits in A, (d) fits in B, C and D.
3. C (a) fits in D, (b) fits in A, (c) fits in B and C.
4. $c \quad(b)$ fits in C, (c) in A and B and (d) in D.
5. C (a) fits in A, (b) fits in B and C, (c) fits in A and D.
6. a The most precious jewel a king had was put on his crown. Similarly the most precious or valuable possession a person has is his education. Thus the correct option is crowning.
7. b The correct answer here is 'bedrock' as it means basic principles.
8. d The correct option is 'innate' as it means existing in a person from birth.
9. c The appropriate option here is imbibe as it means 'to take in or assimilate'.
10. b 'Fraught' here means 'filled with'.
11. d The most appropriate option here is 'alignment'.
12. c The correct option is 'perseverance' as it means 'persistence'.
13. a Exhibit is the correct option as it means to display.
14. a The most appropriate option here is 'restrict' as it here means to limit.
15. c 'Hallmark' means a mark or sign of excellence.
16. b Blacksmith uses the hammer as his main tool just as a pilot uses a joystick to steer an aircraft.
17. d Singular and plural relationship.
18. b A group of stars is a cluster just as a group of trees is a clump.
19. a A duplicate is an exact copy of the original or genuine but not the original. In the same manner a reflection is the exact copy of the object but it's not real.
20. d Herpetology is the study of reptiles just a dermatology is the study of skin.
21. a A Snare is a trap to catch birds just as a seine is a net to catch fishes.
22. a A microscope is used to view small objects just as a telescope is used to view distant objects.
23. b When a tide goes back or recedes it is known as ebb. Similarly when a storm settles it is known as subside.
24. C Elegant is the adjective used to describe a horse. Similarly mischievous is the adjective used to describe a monkey.
25. d The compartment for luggage in a car is known as boot just as in a ship it is known as hold.
26. a Watershed means a big change.
27. d Reform here means to change or amend for the better.
28. c The most appropriate option here is (c), meaning something is happening for the first time.
29. a Regimen means a systematic course.
30. b Offender here refers to the wrong-doer or the accused.
31.c Valiant means brave.
31. b Vulgar mean cheap and boorish.
32. c Endorse means to approve while refute means to disprove.
33. a Adore mean to like someone while detest is to loathe or hate.
34. d The most appropriate option is (d), as subtle means to be diplomatic.
35. b To 'irritate' is to annoy while charm is to impress.
36. a Perennial means everlasting while temporal means not forever or temporary.
37. c Lavish means extravagant while miserly is just the opposite.
38. a Hostile means unfriendly.
39. c To betray is to break trust while loyalty is to keep faith always.
40. c Defame is to be famous for the wrong reasons.
41. c Mercantile means commercial.
42. b Unearth is to find out hidden things or information.
43. c Clearly evidence means proof.
44. a Frozen here means stalled.
45. a Remit means to send.
46. d Whopping means uncommonly large.
47. b It means movement of finances from one place to another.
48. c It means to give the money back; refund.
49. b Given in the passage paragraph 5 , line 2.
50. d Refer to the first two lines of the passage.
51. c Refer to line 3 of the passage.
52. c Refer to line 4 and 5 of the passage.
53. c Refer to line 5 of the passage.
54. a The language of the passage suggests that the article has been taken from a newspaper.
55. a Refer line 1, paragraph 1.
56. c Refer paragraph 1, first 3 lines.
57. d Refer paragraph 1, 4-5 line.
58. c Refer paragraph 1, line 5.
59. b Refer paragraph 1, line 9.
60. c The most appropriate and grammatically correct option is (c).
61. c has enthralled is the most appropriate option as it means to hold spellbound, enchant. Use the Present Perfect Tense for be.
62. b from the ... to the has the right parallel construction.
63. c Conjure means to evolve images in the mind.
64. a You wait - to walk, promenade means a public walk.
65. c The most appropriate option here is 'has seen' since the rest of the sentence is in present tense.
66. d 'delight' is the best option that fits in the sentence.
67. c 'destination' is the most appropriate option.
68. d War machines are meant to harm and destroy so the correct option is 'harm'.
69. c gives is the right verbal tense form to go with is soluble.
70. b gape means to stare open-mouthed. The other words mean gap.
71. d finite means limited. The other words mean unending.
72. d tirade means an angry outburst. The other words may be used to describe a talkative person in a negative sense.
73. b maroon means to be isolated in an island. The other words are uncomplimentary.
74. d ingenious means clever. The other words mean cliche-ridden.
75. b defer means to put something on hold. a, c and d have almost the same meaning.
77.d flippant means to be casual. a, b and c mean almost the opposite.
76. a podium is not derived from ped, unlike b, c and d.
77. c a, b and d measure speed, revolutions per minute and miles driven respectively. Centipede is just a wormlike creature.
78. b inactivity is not necessarily detrimental, unlike a, c and d .

For questions 81 to 90:

$\Delta^{2} f(x)=\Delta f(x+1)-2 \Delta f(x)=f(x+2)-2 f(x+1)-2 f(x+1)+4 f(x)$
$=f(x+2)-4 f(x+1)+4 f(x)$
$=\{2(x+2)-1\}-4[2(x+1)-1]+4[2 x-1]$
$=2 x+3-8 x-4+8 x-4=2 x-5$
Similarly, $\Delta^{3} f(x)=-2 x+7$
and $\nabla^{2} f(x)=\nabla f(x)-2 \nabla f(x-1)$

$$
=f(x)-2 f(x-1)-2 f(x-1)+4 f(x-2)
$$

$$
=(2 x-1)-4(2(x-1)-1)+4(2(x-2)-1)
$$

$$
=2 x-1-8 x+12+8 x-20=2 x-9
$$

$\nabla^{3} f(x)=-2 x+13$
81. $c \quad \Delta^{2} f(17)-\nabla^{2} f(13)=(2 \times 17-5)-(2 \times 13-9)=29-17=12$
82. $d \quad \Delta^{3} f(23)=-2 \times 23+7=-46+7=-39$
83. $b \quad \nabla^{3} f(51)=-2 \times 51+13=-89$
84. $a \quad \Delta^{3} f\left(x^{2}\right)=-2 x^{2}+7$
85. $b \quad \nabla^{3} f(2 x)=-4 x+13$
86. b By the options,
(a) $2 x-1 \neq 2 x-3 ;$ (b) $2 x+1=2 x+1$ and (c) $2 x+3 \neq 2 x+5$
87. d $\quad \Delta^{2}(x)=125 \Rightarrow 2 x-5=125$

$$
\Rightarrow 2 x=130 \Rightarrow x=65
$$

88. $b \quad \nabla^{2} f(x)<0 \Rightarrow 2 x-9<0 \Rightarrow 2 x<9$. So $x=4$
89. b $\quad \Delta^{2} f(x)<0 \Rightarrow 2 x-5<0 \Rightarrow 2 x<5$. So $x=2$
90. c $\quad \Delta^{2} f(x)>0 \Rightarrow 2 x-5>0 \Rightarrow 2 x>5 \quad$...(i)
and $\nabla^{2} \mathrm{f}(\mathrm{x})<0 \Rightarrow 2 \mathrm{x}-9<0 \Rightarrow 2 \mathrm{x}<9 \quad$...(ii)
From (i) and (ii), we get $5<2 x<9$
So $x=3$ and 4 .
For questions 91 to 100: If $x_{0}>y_{0}$, then $f\left(x_{n}, y_{n}\right)=x_{0}+(n-1) y_{0}$ and if $x_{0}<y_{0}$, then $f\left(x_{n}, y_{n}\right)=y_{0}+(n-1) x_{0}$
91. b $x_{0}>y_{0}$, then $f\left(x_{3}, y_{3}\right)=x_{0}+2 y_{0}=5$
92. $c \quad x_{0}<y_{0}$, then $f\left(x_{4}, y_{4}\right)=y_{0}+3 x_{0}=-4$
93. a $x_{0}<y_{0}$, then $f\left(x_{5}, y_{5}\right)=y_{0}+4 x_{0}=53$
94. c $x_{0}>y_{0}$, then $f\left(x_{4}, y_{4}\right)=x_{0}+3 y_{0}=4$ and $f\left(x_{3}, y_{3}\right)=x_{0}+2 y_{0}=5$ So $f\left(x_{4}, y_{4}\right)-f\left(x_{3}, y_{3}\right)=4-5=-1$
95. d $x_{0}>y_{0}$, then $f\left(x_{5}, y_{5}\right)=x_{0}+4 y_{0}=-7, f\left(x_{3}, y_{3}\right)=x_{0}+2 y_{0}=-1$ and $f\left(x_{1}, y_{1}\right)=x_{0}=5$
So $f\left(x_{5}, y_{5}\right)-4 f\left(x_{3}, y_{3}\right)+5 f\left(x_{1}, y_{1}\right)=-7+4+25=22$
96. d If $x_{0}>y_{0}$, then $f\left(x_{7}, y_{7}\right)=x_{0}+6 y_{0}$ and if $x_{0}<y_{0}$, then $f\left(x_{7}, y_{7}\right)$
$=y_{0}+6 x_{0}$. So either (a) or (b) is the answer.
97. b By the options, (a) $x_{0}>y_{0}, f\left(x_{6}, y_{6}\right)=x_{0}+5 y_{0}=6-5=1>0$
(b) $x_{0}>y_{0}, f\left(x_{6}, y_{6}\right)=x_{0}+5 y_{0}=-1<0$
(c) $\mathrm{x}_{0}<\mathrm{y}_{0}, \mathrm{f}\left(\mathrm{x}_{6}, \mathrm{y}_{6}\right)=\mathrm{y}_{0}+5 \mathrm{x}_{0}=2>0$
98. c By the options, (a) $x_{0}<y_{0}, f\left(x_{9}, y_{9}\right)=y_{0}+8 x_{0}=-1<0$
(b) $x_{0}>y_{0}, f\left(x_{9}, y_{9}\right)=x_{0}+8 y_{0}=-2<0$
(c) $\mathrm{x}_{0}>\mathrm{y}_{0}, \mathrm{f}\left(\mathrm{x}_{9}, \mathrm{y}_{9}\right)=\mathrm{x}_{0}+8 \mathrm{y}_{0}=1>0$
99. c $\quad x_{0}>y_{0}, f\left(x_{7}, y_{7}\right)=x_{0}+6 y_{0}$

Here $y_{0}=-1,-2,-3$ and $x 0=1,2, \ldots, 17$.
If $y_{0}=-1$, then $x_{0}=1$ to 5 , five values.
If $y_{0}=-2$, then $x_{0}=1$ to 11,11 values.
Hence, the number of pairs is $5+11=16$.
100. $b \quad x_{0}<y_{0}, f\left(x_{n}, y_{n}\right)=y_{0}+(n-1) x_{0}$

Here $x_{0}=-2,-1$ and $y_{0}=1$
So $y_{0}+(n-1) x_{0}=1+(n-1)(-1)$
$=2-n>0$, if $n=0,1$
or $\mathrm{y}_{0}+(\mathrm{n}-1) \mathrm{x}_{0}=1+(\mathrm{n}-1)(-2)$

$$
=3-2 n>0 \text {, if } n=0,1
$$

For questions 101 to 110: The grid is composed of n coloumns and n rows.
101. b Obviously, the common vertex cannot lie along the outer borders of the grid. Thus, the common vertex will be one of the vertices of the $(n-1) \times(n-1)$ grid. With any one vertex selected, the two squares can be selected in 2 ways. Thus, total number of ways of selecting $=2 \times(n-1)^{2}$
102. d The common edge again cannot lie along the outer border of the grid. If the edge is vertical, there will be n rows of $(n-1)$ edges. If the edge is horizontal, there will be $(n-1)$ rows of n edges. Thus, the common edge can be any one of $2 n(n-1)$ edges within the grid. With one common edge, there is only one way of selecting the two squares.
103. a In any such grid, the number of squares of particular dimension can be found by using the following observations. Dimensions Number of squares of this dimension

$n \times n$	1
$(n-1) \times(n-1)$	2^{2}
$(n-2) \times(n-2)$	3^{2}
$\quad \vdots$	\vdots
$m \times m$	$(n-m+1)^{2}$
If $m=3$, the solution will be $(n-2)^{2}$.	

104. a Each diagonal will have n squares of which 2 squares can be chosen in ${ }^{n} \mathrm{C}_{2}$ ways. Thus, considering both diagonals the numbers of ways two squares selected can lie along either diagonal is $2 \times{ }^{\mathrm{n}} \mathrm{C}_{2}=\mathrm{n} \times(\mathrm{n}-1)$.
105. c Each diagonal will have n squares. However, when n is odd, one square will be common to both diagonals. Thus, the two squares have to be selected out of $(2 n-1)$ squares, i.e. in ${ }^{2 n-1} C_{2}$ ways.
106. c One square can be selected in n^{2} ways (i.e. any one out of the $\mathrm{n} \times \mathrm{n}$ squares). After having selected the square, there are only $n^{2}-(2 n-1)$, i.e. $(n-1)^{2}$ squares out of which the second square can be selected. Again each pair of selection will be counted twice in the above process.

Thus, the answer is $\frac{n^{2} \times(n-1)^{2}}{2}$.
107. a As explained in solution to question 103, the number of distinct squares of dimensions $m \times m$ is $(n-m+1)^{2}$.
108. a Basically, we have to select a figure like

Once the middle square is selected, there is only one way of selecting the other 4 squares. The middle square cannot lie along the outer
most row or column. Thus, the middle square has to be a square out of the inner $(n-2) \times(n-2)$ grid, i.e. $(n-2)^{2}$ squares.
109. a The dimensions of the rectangle can be chosen in the following manner:

Width	Length
1	1 to n
2	2 to n
3	3 to n
\vdots	\vdots
n	n

Thus, the total number of ways are $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.
110. a The first square can be chosen in three ways: (1) a corner square, (2) a square on an edge but not in the corner, and (3) a square which is neither in a corner nor on the edge.
For (1), the first square can be chosen in 4 ways. The second square can be chosen in ($n^{2}-4$) ways.
Total number of ways $=4\left(n^{2}-4\right)$
For (2), the first square can be chosen in 4(n-2) ways. The second square can be chosen in $\left(n^{2}-6\right)$ ways. Total number of ways $=4(n-2)\left(n^{2}-6\right)$
For (3), the first square can be chosen in $(n-2)^{2}$ ways. The second square can be chosen in ($n^{2}-9$) ways. Total number of ways $=(n-2)^{2}\left(n^{2}-9\right)$
Thus, the total number of ways of selecting a pair of non-adjacent squares is $4\left(n^{2}-4\right)+4(n-2)\left(n^{2}-6\right)+(n-2)^{2}\left(n^{2}-9\right)$. But here we have counted each valid pair twice. Thus, the correct answer on simplification is $\frac{\left(n^{4}-9 n^{2}+12 n-4\right)}{2}$.
111. b The polynomial is expressed as $(6,-5,1)$ and the function can be evaluated as

3	6	-5	1
		$+3 \times 6$	$+3 \times 13$
3	6	13	40
		$+3 \times 6$	$+3 \times 31$
	6	31	133

Since the 2nd quotient is asked we stop at this level and the 2nd quotient is $6,31,133$.
112. c For the 3rd quotient we will work on the result of the 2 nd quotient (i.e. perform the function once more).

2	1	2	4	8
	$+2 \times 1$	$+2 \times 4$	$+2 \times 12$	
	1	4	12	32

113. b

-1	0	0	-1	1
		-1×0	-1×0	-1×-1
-1	0	0	-1	2
		-1×0	-1×0	-1×-1
-1	0	0	-1	3
		-1×0	-1×0	-1×-1
	0	0	-1	4

114. d

4	1	2	0	2	1
		$+4 \times 1$	$+4 \times 24$	$+4 \times 96$	$+4 \times 386$
	1	6	96	386	1544

115. c

116. a Working backwards | -1 | a | b | c | d |
| :---: | :--- | :--- | :--- | :--- |
| | 3 | 5 | 2 | 7 |

$a=3$
$5=b+(-1) \times 3 \Rightarrow b=8$
$2=c+(-1) \times 5 \Rightarrow c=7$
$7=d+(-1) \times 2 \Rightarrow d=9$

For questions 117 to $\mathbf{1 2 0}$:

A	5	6	10	9
		$+A \times 5$	$+A \times B$	$+A \times C$
	5	B	C	93

Working backwards
$\mathrm{A} \times \mathrm{C}=93-9=84$
Also $A \times C=A(10+A \times B)=A(10+A \times(6+5 A))=A\left(10+6 A+5 A^{2}\right)$
Substituting the options we see that when
$A=2, A\left(10+6 A+5 A^{2}\right)=84$
$\therefore B=16=y$
$C=42=z$
For questions 121 to 130: The transformation basically divides the sequence into k parts with the first part having the first x_{1} elements, the second part having the next x_{2} elements and so on. . .
121. d The transformation breaks the sequence into three parts, first part of first 2 elements, second part of 3 elements and third part of balance 5 elements.
$(1,2)(3,4,5)(6,7,8,9,10)$ Thus, $S_{2} \equiv 3,4,5$
122. c $\mathrm{T}(\mathrm{S}, 3,2,3,5) \equiv(1,2)(3,4,5)(6,7,8,9,10)$
$\mathrm{T}\left(\mathrm{S}_{3}, 2,1,4\right) \equiv(6)(7,8,9,10)$
Thus, S_{1} of this $\equiv 6$
123. $\mathrm{d} \mathrm{T}(\mathrm{S}, 2,4,6) \equiv(1,2,3,4)(5,6,7,8,9,10)$
$\mathrm{S}_{2} \equiv 5,6,7,8,9,10$
$\mathrm{F}\left(\mathrm{S}_{2}\right) \equiv 10,9,8,7,6,5$
124. a If $S \equiv a, b, c, d$
S_{2} of $\mathrm{T}(\mathrm{S}, 2,2,2) \equiv \mathrm{c}, \mathrm{d}$
$F\left(S_{2}\right) \equiv d, c \equiv 4,5$. Thus, $s_{4}=d=4$
125. a $S \equiv S_{1} S_{2} S_{3} \equiv 3,5,7,2,5,1,7,9$
126. c Since it is broken in three parts, $\mathrm{k}=3$.
127. $\mathrm{c} \mathrm{x}_{3}$ denotes the number of elements in third part, i.e. 3.
128. c is a AP with $a=1, d=2$ and $t_{n}=99$. Thus, $n=50$. This series of S is divided into 25 parts with 2 elements in each. Thus, the 20th part will have the 39th and 40th elements $\mathrm{t}_{39}=1+38 \times 2=77$
$\mathrm{t}_{40}=79 \quad \therefore \mathrm{~F}\left(\mathrm{~S}_{20}\right) \equiv 79,77$
129. $b \quad t_{n}=61=1+(n-1) 2 \Rightarrow n=31$. Thus, the 30 elements before 61 will form the first 15 parts and $(61,63)$ will be the 16 th part.
130. d Again S is an AP with $a=1, d=3$ and $t_{n}=34$.
$\therefore \mathrm{n}=12$. Now the function defines $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\cdots+\mathrm{x}_{\mathrm{k}}=\mathrm{n}=12$.
131. $c f\left(x_{5}, x_{4}, x_{3}, x_{2}, 1\right)=1^{5}(x-3)+1^{4}(x-2)+1^{3}(x-1)+1^{2}(x)=4 x-6$
132. b $f\left(x_{6}, x_{4}, x_{2}, x_{1}, 2\right)=2^{6}(x-5)+2^{4}(x-4)+2^{2}(x-2)+2^{1}(x)$

$$
\begin{aligned}
& =64(x-5)+16(x-4)+4(x-2)+2 x \\
& =86 x-392
\end{aligned}
$$

133. a $f\left(x_{7}, x_{5}, x_{3}, x_{2}, x_{1}, 2\right)$
$=2^{7}(x-6)+2^{5}(x-5)+2^{3}(x-4)+2^{2}(x-2)+2^{1}(x)$
$=128(x-6)+32(x-5)+8(x-4)+4(x-2)+2 x=174 x-968$
134. b Here value of the coefficient is 0 . So the expression is 0 .
135. d $f\left(x_{6}, x_{5}, x_{4}, x_{-2}, 2\right)=2^{6}(x-8)+2^{5}(x-2)+2^{4}(x-1)+2^{-2} x$
$=64(x-8)+32(x-2)+16(x-1)+2^{-2} x$
$=64(-4-8)+32(-4-2)+16(-4-1)+2^{-2}(-4) \quad[P u t x=-4]$
$=64(-12)+32(-6)+16(-5)+(-1)$
$=-1041$
136. a $f\left(x_{4}, x_{3}, x_{2}, x_{-1}, 3\right)=81(3-5)+27(3-2)+9(3-1)+3^{-1} \times 3$

$$
=-116
$$

137. $c f\left(x_{5}, x_{3}, x_{2}, x_{-1}, 2\right)=32(x-6)+8(x-3)+4(x-2)+2^{-1} x$

$$
=\frac{89 x-448}{2}
$$

138. c By the options, option (c) is $f\left(x_{3}, x_{2}, x_{1}, 3\right)=27(x-2)+9(x-1)+3 x$

$$
=39 x-63
$$

139. a By the options, option (a) is $f\left(x_{3}, x_{-1}, x_{-2}, 1\right)$
$=(x-5)+(x-4)+x$
$=3 x-9=6$
140. a Check the option, (a) is the correct choice.
