UNIVERSITY OF KWAZULU-NATAL
SUPPLEMENTARY EXAMINATION: 12 January 2009
Subject, Course and Code: Physics Foundation PHYS099 and PHYS199
DURATION: 3 HOURS
TOTAL MARKS:180
INTERNAL EXAMINERS: Ms W. Dlamini, Mrs S. Halstead, Ms A. Marais, Mr R. Webber and Mr E. Zhandire
EXTERNAL EXAMINER: Dr V. Couling

ANSWER ALL QUESTIONS ON THIS PAPER
 IN THEIR OWN INTERESTS STUDENTS ARE REQUESTED TO WRITE LEGIBLY. THIS PAPER CONSISTS OF 12 PAGES. PLEASE SEE THAT YOU HAVE THEM ALL.

Properties of Matter

Question 1 (14 marks)
Give your answers to the following questions with the correct number of significant figures or decimal places.
(a) Calculate the mass of 98 identical pieces of copper if the mass of each piece is 0.0508 kg .

$$
\begin{equation*}
\text { exactly } 98 \times 0.0508=4.98 \mathrm{~kg} \checkmark 3 \text { sig figs } \checkmark \tag{2}
\end{equation*}
$$

(b) $1.05 \mathrm{~m}+1005 \mathrm{~cm}-1050 \mathrm{~mm}$

$$
\begin{equation*}
1.05 m+10.05 m-1.050 m=10.05 m \checkmark \text { dec. places } \downarrow \tag{2}
\end{equation*}
$$

(c) $120.5 \mathrm{~km} / \mathrm{h}=120.5 \times 1000 / 3600=33.47 \mathrm{~m} / \mathrm{s} \checkmark 4$ sig figs \checkmark
(d) $(11.06 \pm 0.05) \mathrm{cm}-(90.5 \pm 0.3) \mathrm{mm}$
$=(11.06-9.05) \pm 0.08 \mathrm{~cm}=2.01 \checkmark \pm 0.08 \checkmark \mathrm{~cm}$ dec places \checkmark
(e) A room is 16.40 m long by 4.5 m wide by 3.26 m high. The density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$.

Find the mass of the air contained in the room.
$\mathrm{V}=16.40 \times 4.5 \mathrm{~m} \times 3.26 \mathrm{~m} \checkmark=240 \mathrm{~m}^{3} \checkmark$
$\mathrm{~m}=\mathrm{D} \times \mathrm{V}=1.29 \times 240 \checkmark=3.1 \times 10^{2} \mathrm{~kg} \checkmark 2$ sig figs \checkmark
Kinematics Question 2 (9 marks)
The following velocity-time graph represents the movement of a car that was initially travelling towards the East.

(a) At which stage(s) did the car have a constant velocity?
(b) Use the graph to calculate the acceleration from E to F.

$$
\begin{equation*}
a=\frac{0-2}{35 \sqrt{30}}=-0.4^{\checkmark} \mathrm{ms}^{-2} \tag{3}
\end{equation*}
$$

(c) Use the graph to determine the displacement of the car between A and C .

$$
\begin{equation*}
s=\text { area under } v \text {-t graph }=\frac{1}{2}(15)(-1)=-7.5^{\checkmark} \mathrm{m} \tag{3}
\end{equation*}
$$

(d) Describe the motion of the car from B to C. Slowing down in Easterly direction

Question 3 (13 marks)

A man throws a brick upwards at an angle of 30.0° to the horizontal at a speed of $5.00 \mathrm{~ms}^{-1}$ from the top of a building 6.00 m above the ground, as shown in the diagram below. Taking upwards as positive and the magnitude of $g=9.80 \mathrm{~ms}^{-2}$ calculate, to the correct number of significant figures:

(a) the magnitude and direction of the ball's vertical velocity as it reaches the ground.

$$
\begin{equation*}
v^{2}=u^{2}+2 a s=(25)^{2}+2(-9.8)(-6)=124 \quad \text { therefore } \quad v=-11.1 \mathrm{~ms}^{-1} \tag{5}
\end{equation*}
$$

(b) the time taken for the ball to reach the ground
$v=u \stackrel{\checkmark}{ } \quad-\sqrt{\prime} .11=\sqrt[\checkmark]{ } .5+(-9.8) t \quad$ therefore $\quad t=1.39 \mathrm{~s}$
(c) How far from the base of the building, in the horizontal direction, does the ball land? (4)

$$
s=u t+\frac{1}{2} a t^{2}=(4.33)(1.39)+\stackrel{\checkmark}{0}=6.02 \mathrm{~m}
$$

Question 4 (11 marks)

A towel is held on an inextensible washing line, as shown alongside. The tensions T_{1} and T_{2} are 12 N and 13.5 N respectively.
Take the magnitude of $\mathrm{g}=9.80 \mathrm{~ms}^{-2}$
(a) Calculate the mass of the towel. (6)

$$
\begin{aligned}
\sum F_{y} & =T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2} \rightarrow m g=0 \\
\therefore m & =\frac{12 \sin 30+13.5 \sin 40}{9.8} \sqrt{\mathrm{~m}} \\
& =\frac{1,5 \mathrm{~kg}}{}
\end{aligned}
$$

(b) The cord of the washing line has a maximum tensile strength of 25 N . Suppose the mass of the towel doubles when it is wet, and all angles remain the same. Will the cord be able to support the weight of the wet towel if it is hung in the same position? (The maximum tensile strength of the cord is the maximum amount of tension the cord can support without breaking.)
$5.2 m_{\text {wet }}=3,0 \mathrm{~kg}$.

$$
\begin{aligned}
& \therefore T_{2}=45.7-1.3\left(0.9 T_{2}\right) \\
& \therefore T_{2}=21,1 \mathrm{~N}^{\mathrm{V}} \text { and } T_{2}>T_{1} \\
& \therefore I_{T} \text { wILL NOT BREAK } \mathrm{J}
\end{aligned}
$$

Question 5 Astronomy (5 marks)

Next to the term in column A, write the letter of the term in column B, which best describes it.

Column A
Planets (c) move around a sun
Proxima Centauri (e) Produce light or (d) Star
Sun (e) Produce light or (d) Star
Moon
Milky Way
(a) a satellite
(b) Galaxy

Column B

a) A satellite
b) Galaxy
c) Move around a sun
d) Star
e) Produces light

Electrostatics Take the electrostatic constant $k=9.00 \times 10^{9} \mathbf{N m C}^{-2}$
Question 6 (30 marks)
(a) Two charged objects have a repulsive force of 0.0980 N . If the distance between the two charges is doubled, then what is the new force?

$$
\begin{align*}
& \mathbf{F} \propto \frac{1}{\mathbf{r}^{2}} \checkmark=0.0980 \mathrm{~N} \tag{3}\\
& F_{\text {new }}=\frac{1}{(2 r)^{2}}=\frac{1}{4} \times 0.0980 \quad \checkmark=0.0245 \mathrm{~N}
\end{align*}
$$

(b) Three charges $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} with positions shown in the diagram exert electrostatic forces on each other.

(ii) Determine the magnitude and direction of the resultant electrostatic force on Q_{2}.

Formula

$$
\begin{aligned}
& \left.F_{12}=9 \times 10^{9} \frac{\mid-5.0 \times 10^{-9}}{(0.002)^{2}} \times 1.5 \times 10^{-9} \right\rvert\,=\frac{1.69 \times 10^{-2} \mathrm{~N}}{1} \text { Left } \\
& F_{32}=\frac{9 \times 10^{-9}\left|-20 \times 10^{-3} \times 15 \times 10^{-9}\right|}{(0.006)^{2}}=7.5 \times 10^{2} \mathrm{Night}
\end{aligned}
$$

$F_{\text {res Q2 }}=9.4 \times 10^{-3} \mathrm{~N}$ left \checkmark
(ii) Determine the magnitude and direction of the electric field at the point where Q_{2} is situated.

$$
\begin{equation*}
E=\frac{\mathbf{F}}{\mathbf{q}}=\frac{9.4 \times 10^{-3}}{1.5 \times 10^{-9}}=6.3 \times 10^{6} \mathrm{~N} / \mathrm{C} \text { left } \mathrm{J} \tag{4}
\end{equation*}
$$

(c) Two parallel charged plates, X and Y , are placed as shown in the diagram.
(i) If a positive charge is moved/moves horizontally from Y to X , what energy changes take place? gain E_{K} lose $E_{P} \quad$ (2)
(ii) If a positive charge is moved/moves vertically from L to M, what energy changes take place? none
(1)

(d) A charge Q of $4.0 \mu \mathrm{C}$ exerts a force of $3.0 \times 10^{-2} \mathrm{~N}$ to the right, on a charge q of 2.0 nC . Calculate:
(Q)
(a)
(i) $\begin{aligned} & \text { The electric field at } \mathrm{q} \\ & E=\frac{F}{q}=\frac{3.0 \times 10^{-2}}{2.0 \times 10^{-9}}=1.5 \times 10^{\top} \mathrm{N} / \mathrm{C} \text { right }\end{aligned}$
(ii) The distance between the charges

$$
\begin{aligned}
& R^{2}=\frac{k Q q^{\checkmark}}{F}=\frac{9 \times 10^{9} \times 4.0 \times 10^{-6} \times 2.0 \times 10^{-9}}{3.0 \times 10^{-2} \checkmark}=0.0024 \\
& r=4.9 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

OR USE

$$
\mathrm{r}^{2}=\frac{k Q}{E}
$$

Electric circuits

Question 7 (21 marks)

The following circuit has identical resistors each of resistance \mathbf{R}. The battery and connecting leads have no resistance. There is a current of 400 mA as shown in the diagram, and the voltage across resistor D is 1.50 V .

(a) What is the current through:
(i) Resistor C ?
(ii) Resistor D ?

$$
\begin{equation*}
I_{D}=\frac{400}{4} \dot{m} A^{\prime}=100 \mathrm{~mA} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
I_{A} & =I_{D}+400 \mathrm{~mA} \tag{3}\\
& =100+400=500 \mathrm{~m} A \tag{2}
\end{align*}
$$

(b) Calculate amount of charge that flows through resistor E in 20 s .

$$
\begin{equation*}
\mathrm{Q}=\mathrm{I} \times \mathrm{t}=0.100 \times 20=2.0 \mathrm{C} \tag{3}
\end{equation*}
$$

(c) Calculate
(i) The voltage across resistor C

$$
\begin{align*}
V_{C} & =V_{D}+V_{E} \tag{3}\\
& =1.50+1.50=3.00 \mathrm{~V}
\end{align*}
$$

(ii) The voltage across resistor A.
$\mathrm{V}_{\mathrm{A}}=\left(\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{D}}\right) \times \mathrm{V}_{\mathrm{D}}=(500 / 100) \times 1.5=7.5 \mathrm{~V}$
$\mathrm{V}_{\text {battery }}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\text {parallel }}=7.50+3.00=10.50 \mathrm{~V}$
(iv) The resistance R of one resistor.

$$
\begin{equation*}
R=\frac{V_{p}}{I_{0}}=\frac{1.5}{100 \times 10^{-3}}=15 \Omega \tag{3}
\end{equation*}
$$

Question 8 (6 marks)

Hlonophile has R1.05 credit on her pre-paid electricity meter. Electricity cost 50c per unit of kilowatt-hour. She gets home, cooks supper before dark using a 2000W stove for 50 minutes, then studies, using the 100 W bulb. How long will she be able to study? Show calculations to support your answer.
"units" of energy left $=\frac{1.05}{0.50}=2.1 \mathrm{kWh}$
Stove: $W=\frac{2 k W x 50 h r}{60} \quad \checkmark=1.67 \mathrm{kWh}$ therefore $2.1-1.67=0.43 \mathrm{kWh}$ left for light Ω
Time with light bulb: $t=\frac{0.43}{0.100} \Omega=4.3$ hours. Therefore she can study for 4.3 hrs

Question 9 (10 marks)

The diagram above shows an electrical circuit consists of an unknown resistor Rx connected in series with a 25.0Ω resistor to a battery of emf of 12.0 V and internal resistance of 0.320Ω. An ammeter connected in the circuit reads 200 mA .
(a) A voltmeter is connected across the battery when the circuit is closed. What is its reading?

$$
\begin{align*}
& \text { its reading? } \tag{3}\\
& 120=V_{\text {ted }}+10 s t \cdot V_{01 t}=V_{t p d}+200 \times 10^{-3}(0.320)
\end{align*}
$$

(b) Calculate the value of the unknown resistor R_{x}.

$$
\begin{align*}
V_{E P d} & =I\left(R_{x}+25\right)^{2} \Rightarrow R_{x}=\frac{11, a_{0}}{200 x 10}-3-25 \tag{4}\\
R_{x} & =34.5 \Omega
\end{align*}
$$

(c) The rate at which energy is used by the 25.0Ω resistor.

$$
\begin{aligned}
P & =I^{2} R \\
& =\left(2.00 \times 10^{-3}\right)^{2}(25.0) \\
& =1.0 \mathrm{~W}
\end{aligned}
$$

Question 10 (8 marks)

In the circuit shown above the unknown resistances R_{x} and R_{y} are equal. Use the nodes and loops marked to find:
Subtract $1 / 2$ for missing loop or law in each!

(a) Current, I_{x} - At node P or Q , using Kirch I :

$$
\begin{aligned}
I_{x} & =0,65+0,14 \\
& =0.82 \mathrm{~A}
\end{aligned}
$$

(b) Resistance, R_{x} In loop1, using Kirch II :

$$
\text { 100p1: } \begin{align*}
12 & =R_{x}(0,68)+R_{y} I_{x} \\
R_{x} & =R_{y} \\
12 & =0.68 R_{x}+0.82 R_{x} \tag{3}\\
R_{x} & =\frac{8,0 \Omega_{\square}}{}
\end{align*}
$$

(c) Battery voltage, $\mathrm{V}_{\mathrm{x}} \ldots$ In loop 2, using Kirch II

$$
\begin{aligned}
& 100 p^{2} \\
& 12-V_{x}^{\prime}=10(0.14)+R_{y} I x V \\
& R_{y}=R_{x} \\
& \Rightarrow-V_{x}=1.4+8.0(0.82)-12 \\
& V_{x}=4.0 V
\end{aligned}
$$

(d) Newton's Laws

Question 11 (7 marks)

An astronaut lands on a spherical (round) planet, X , of radius 150 km . She finds that a 2.0 kg mass released from rest at a height of 1.0 m takes 1.5 s to reach the surface.
Take $\mathbf{G}=6.67 \times 10^{-11} \mathbf{N m}^{2} \mathrm{~kg}^{-2}$ Calculate:
(a) The gravitational acceleration of the object on planet X .
$3.1 \quad u=0$

$$
\begin{aligned}
& u=0 \\
& s=1,0 \mathrm{~m} \\
& t=1,5 \mathrm{~s}
\end{aligned} \quad \therefore a=\frac{2 s^{2}}{t^{2}}=0,9 \mathrm{~m} / \mathrm{s}^{2}=g_{\text {planet } x}
$$

(b) The mass of planet X .

$$
g=G \frac{M}{r^{2}} \therefore M=\frac{g r^{2}}{G} J=\frac{0.9 \times(150000)^{2}}{6,67 \times 10^{-1}}=3,0 \times 10^{20} \mathrm{~kg}
$$

Question 12 (8 marks)

On the diagram alongside, draw in, and label all the forces acting on the car as it is being pushed up the hill at a constant velocity. Show approximate magnitudes. (8)

Question 13 (9 marks)

A box is being dragged along a rough concrete floor, as shown in the diagram. The mass of the box is 50 kg and the force exerted by the rope is 200 N , and the force of friction is 25 N . Take "up" and "left" to be positive as shown in the diagram alongside. Determine:
(a) The normal force acting on the box

$$
\begin{align*}
& F_{v}=200 \sin 60^{\circ}=173 \mathrm{~N} \text { and } F_{R}=0 \tag{4}\\
& F_{v}+F_{N}+F_{G}=0 \quad F_{N}=490-173=317 \mathrm{~N}
\end{align*}
$$

(b) The acceleration of the box

$$
F_{h}=200 \stackrel{\checkmark}{\checkmark} 00^{\circ}=100 \stackrel{\checkmark}{N} \quad F_{R}=100-25=50 a
$$

$$
\begin{equation*}
\stackrel{\checkmark}{a=1.5} \mathrm{~ms}^{-2} \tag{5}
\end{equation*}
$$

Question 14 (8 marks)

Determine the breaking force needed to bring a small truck of mass 2000 kg travelling west at $120 \mathrm{~km} / \mathrm{h}$ to a stop in 100 m .
$\mathbf{u}=\frac{120 \times 1000}{3600}=33.3 \mathbf{m} / \mathbf{s} \quad \Omega v^{2}=u^{2}-2$ as Ω so: $0=33.3^{2}-2$ a (100) Ω
$\mathbf{a}=\frac{0-33.3^{2}}{2 \times 100}=-5.56 \mathrm{~m} / \mathrm{s}^{2} \Omega$
$F_{\text {res }}=m \cdot a=2000 \times(-5.56) \quad \Omega=-\Omega 1.11 \times 10^{3} \mathrm{~N} \Omega$

Optics

Question 15 (21 marks)

(a) The diagram below shows light entering a glass block which is placed above some water. Use the table of refractive indices to answer these questions. Please use a ruler, and show angles that are approximately correct, you do not need to calculate them.

On the diagram

material	refractive index
air	1.00
ice	1.31
water	1.33
perspex	1.42
glass	1.58

(i) Mark in the angle of incidence.
(ii) Show the path of the light right through into the water.

(b) The surfaces of a plane mirror and a rectangular block of Perspex are at right angles to each other as shown in the diagram below. The angle of refraction of a light ray is measured as 21.5° in the Perspex. Calculate the angle of incidence of the light ray, θ, at the surface of the mirror. Explain your reasoning at each stage.

Refraction into Perspex:

$n_{\text {air }} \sin \theta_{\text {air }}=n_{\text {Perspex }} \sin \theta_{\text {perspex }}$
$1.00 \times \sin \theta_{2}=1.42 \sin 21.5^{\circ} J \checkmark$
$\theta_{2}=31.4^{\circ}$,
The two normals are perpendicular

But angle of reflection $=$ angle of incidences: so $\theta=58.6^{\circ} \mathrm{J}$
(c) A periscope makes use of total internal reflection. It uses a triangular glass prism such as shown in the diagram below. Use the data from the table on the previous page to help answer these questions.
(i) On the diagram above label clearly
(A) At least one surface where no bending of the light ray takes place.

(ii) Calculate the critical angle for glass.

Critical angle is θ_{i} for $\theta_{r}=90^{\circ}$ and incident in more optically dense medium
Therefore $\quad n_{\text {glass }} \sin \theta_{\text {Cglass }}=n_{\text {air }} \sin 90^{\circ} \checkmark \quad$ gives: $\quad \sin \theta_{\text {Cglass }}=\frac{1}{1.58}$
so $\theta_{\text {OCglass }}=39.3^{\circ}$ 几
(iii) If the prism in the diagram were made of ice, would the periscope work? Explain by means of a calculation.
Critical angle for ice: $\sin \theta_{\text {Cice }}=\frac{1}{1.31} \curvearrowright$ so $\theta_{\text {Cice }}=49.8^{\circ} \checkmark$ The geometry of the prism makes
$\theta_{\text {ice }}=45^{\circ} \Omega$. When θ_{i} is less than the critical angle, then total internal reflection does not occur, \checkmark the prism will only reflect partially and not work as effeciently.

