(8)

- 1. Find the equation of the line passing through the point (-4, 0) and through the point of intersection of the lines 2x y + 1 = 0 and 3x + y 16 = 0.

 Write your answer in the form y = mx + c. (5.5)
- 2. Suppose (a, b) is a point on the graph of y = f(x). Give, in terms of a and b, the co-ordinates obtained by the following transformations:
- (a) f(x+1)
- (b) f(x) + 1
- (c) f(x-1)+1
- (d) $f^{-1}(x)$
- 3. Find the domain of the function $f(x) = \sqrt{x} + \sqrt{3-2x}$. Give your answer in interval notation.
- 4. For $p(x) = -x^2 + 3$, $q(x) = (x+1)^2$:
 - a) Sketch, on the axes provided:

$$A = \{(x, y) \in R^2 \mid y \ge p(x)\} \cap \{(x, y) \in R^2 \mid y > q(x)\}$$
(4)

b) Give the domain of A in interval notation.

(1)

c) Find $(p \circ q)(2)$

- (2.5) [7.5]
- 5. The inverse of the greatest restriction of a quadratic function is given by

$$y = 2 - \sqrt{x - 3} .$$

Find:

- a) The equation of the original quadratic function.
- (3)
- The restriction which has the inverse given above.
- (2.5) [5.5]

6. A circle has domain [-4, 2] and range [2, p].

a) Determine the radius of the circle.

(1)

b) Determine the value(s) of p.

(1)

c) Determine the co-ordinates of the centre of the circle.

(2)

d) Write down the equation of the circle in the form

$$(x-a)^2 + (y-b)^2 = r^2$$

(1.5) [5.5]

7. Consider m(x) = x - 1 and $p(x) = \frac{3}{x}$. Sketch the graph of $(p \circ m)(x)$.

Clearly label asymptotes and any points plotted.

(4)