External Examiner:	Dr Colin Southway
	University of KwaZulu-Nata
	Pietermaritzburg
Internal Examiners:	R Moodley
	M Naicker
	R Robb
	UKZN – Westville
	M Rasalanavho
	A van der Hoven
	UKZN – Pietermaritzburg

Duration: 3 Hours

Total Marks: 100

Instructions to Candidates:

- Answer all 5 questions on the paper provided and show your working clearly. Marks are given in brackets after each question and all questions are marked out of 20.
- The question paper consists of 12 pages including a Periodic Table, a Data Sheet and Electronegativity values
- Please check that you have them all.

Question One [20 marks]

1.1 Sodium azide (NaN₃) is used in airbags in cars. In a collision it decomposes explosively, releasing nitrogen gas. This gas inflates the airbag, protecting the passengers from injury. The reaction that occurs is as follows:

 $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$

(a) What is the mass (in grams) of 1 mole of sodium azide, NaN₃?

(0.5)

(b) Calculate the percentage by mass of sodium present in sodium azide.

(1.5)

(c) If the airbag contains 100 g of sodium azide, determine the number of <u>nitrogen</u> atoms present.

(4)

(d) If 1.39×10^{24} molecules of nitrogen gas were released to inflate the airbag, what volume would this gas occupy at 25 °C and 1 atm?

(2)

1.2 Concentrated nitric acid (HNO₃) has a concentration of 0.650 g/ml. What volume of concentrated nitric acid is needed to make a 2.00 dm³ dilute solution of 0.1000M HNO₃?

(3)

- 1.3 Researchers discovered a compound which was useful for the treatment of malaria. Analysis by a chemist found that this compound contains 74.0 % carbon, 7.5 % hydrogen, 8.6 % nitrogen and the remainder was oxygen.
 - (a) Define the following terms:
 - (i) Empirical formula
 - (ii) Molecular formula

(1)

(1)

(b) Determine the empirical formula of the compound.

(5)

(c) The compound was named *Quinine*, and its molecular mass was found to be 325 g/mol. What is its molecular formula?

(2)

Question 2 [20 marks]

2.1 Silicon tetrachloride is used in the electronic industry to make elemental silicon for computer chips. Silicon tetrachloride is prepared from silicon dioxide, graphite and chlorine gas according to the following equation:

 $SiO_2(s) + 2C(s) + 2Cl_2(g) \rightarrow SiCl_4(I) + 2CO(g)$

(a) Define limiting reagent and excess reagent.

(b) If 57.3 g of silicon dioxide and 24.3 g of carbon are mixed and an unlimited stream of chlorine gas is supplied, what mass of silicon tetrachloride could be obtained?

(5)

(2)

(2)

(2)

- (c) If the reaction achieves a 95.7 % yield, what would be the actual mass of silicon tetrachloride obtained?
- (d) What mass (in grams) of the solid reactants remain?
- (e) Calculate the number of particles of solid that will remain unreacted.What type of particles are these?

(2)

2.2 Silver bromide is easily prepared in the laboratory by means of a <u>precipitation</u> <u>reaction</u> according to the following balanced equation:

 $2AgNO_3(aq) + CaBr_2(aq) \rightarrow 2AgBr(s) + Ca(NO_3)_2(aq)$

(a) Explain the phrase "precipitation reaction".

(1)

- (b) Give another name under which the above reaction can be classified.
 - (1)
- (c) Calculate the volume (in millilitres) of 0.125 M calcium bromide required to produce 1.081 g of silver bromide.

(5)

Question 3 [20 marks]

Use your Periodic Table to answer the following questions:

3.1 Consider the -2 ion of the element $_{34}X$. Which noble gas is iso-electronic with this ion? (a) (1)Write the abbreviated electronic configuration for this ion. (b) (1)Identify element X. (C) (1)3.2 Consider the element whose spectroscopic electronic configuration is as follows: 1s²2s²2p⁶3s²3p⁶4s¹3d¹⁰ (a) Which is the outermost energy level? (1)b) Which energy sub-level has the highest energy? (1)3.3 (a) State Hund's rule of Maximum Multiplicity. (1)Define the term "orbital". (b)

(1)

- (c) In which group(s) would you find elements with 2 half-filled p orbitals?
- (d) Draw the tabular/orbital electronic configuration of chlorine and use this to determine how many unpaired electrons it has.
 - (1)
- (e) Write the abbreviated spectroscopic electronic configuration of nickel.
- (f) Write the outer shell spectroscopic electronic configuration of a period3 element which has 5 electrons in its valence shell.

(1)

(1)

(1)

3.4 Consider the two most common isotopes of boron: B-10 and B-11. Do the isotopes of boron have the same physical <u>and chemical properties</u> as each other? Explain your answer.

- 3.5 Consider the metal in period 3 and group 13.
 - (a) How many core electrons does this element have?
 (1)
 (b) Write down its <u>excited state</u> spectroscopic electronic configuration.
 (1)
 (c) Write down the symbol for the ion of this element <u>and</u> its spectroscopic electronic configuration.

(2)

- 3.6
- (a) Write down the symbol of any ion which is iso-electronic with the chloride ion.

(1)

(b) Give a reason why oxygen and magnesium form ions which are iso-electronic.

(2)

Question 4 [20 marks]

- 4.1 Study the following statements and correct them where necessary:
 - (a) Sodium bicarbonate has the formula NaCO₃ (2)
 - (b) Iron(III) sulfite has the formula FeSO₃
- 4.2 Read each of the following statements. Decide if they are true or false. If false, correct the statement.
 - (a) Ionic compounds always contain only electrostatic bonds.

(2)

(2)

(b) Molecular solids have relatively low melting and boiling points because they are held together by means of strong electrostatic bonds.

(2)

- 4.3 Covalent bonds can be classified as either polar or non-polar.
 - (a) Explain the difference between a polar and a non-polar bond.

(2)

(b) Classify each of the following as polar or non-polar bonds.Show how you came to your answers.

CI - CI CI - Br CI - N CI - H

(4)

- 4.4 Study the following table of compounds, and then answer the questions that follow
 - Each formula can be used more than once in answering questions a to f
 - Write the **full formula** for each answer
 - Some questions may have more than one answer, and some may have no answer, in which case say `none' or `no answer'
 - Each question is worth **one mark**
 - The mark will be assigned only if the complete answer is given

CO ₂	CH₃OH	Cu ₂ S
NH₄OH	Li ₃ N	CaCO ₃
SrBr ₂	MgSO ₄ .7H ₂ O	NaCl(aq)

- (a) Write down the formula(e) for all the substances which include water.
- (b) Write down the formula(e) for all the tri-atomic formula units.
- (c) Write down the formula(e) for all the ionic compounds.
- (d) Write down the formula(e) for all the compounds which contain only 3 hydrogen atoms.
- (e) Write down the formula(e) for compounds containing an alkali earth element(s).
- (f) Write down the formula(e) for substances containing a -3 mono-atomic anion

(6)

Question 5 [20 marks]

5.1 A company is developing a new chemical moisture absorber and indicator to keep CD players dry. Cobalt(II) chloride, CoCl₂, is tested as a possible substance for the job. In one experiment 10.00 g of the pink hydrated CoCl₂ is heated in a crucible. The results of the experiment are given in the table below:

Mass of sample (g)									
After 1 st heating	5.568								
After 2 nd heating	5.458								
After 3 rd heating	5.457								

(a) Explain why the mass of the sample decreased.

(1)

(1)

(c) Determine the empirical formula of the CoCl₂ hydrate.

(3)

(d) Write a balanced chemical equation for the dehydration reaction.

(1)

- (e) Define the term "heating to constant mass".
- (1)(f) Provide a reason for cooling the contents of the crucible in a desiccator.
- (1) (g) Explain, with the aid of calculations, why a 3rd heating was required.
- (h) Explain why a 4th heating was not necessary.

(1)

(3)

- (i) You re-hydrate a small amount of the blue anhydrous CoCl₂ by adding a few drops of water to the sample. What observation would be made that shows a physical change?
 - (1)
- (j) After the experimentation with the hydrated and anhydrous forms of the compound, CoCl₂, would it be recommended as a moisture absorber and indicator? Explain your answer.

(2)

5.2 Two students obtained the results in the table below when they heated a solid. In each case, the students observed drops of liquid forming on the sides of the test tube while heating.

Student	Mass before heating (g)	Constant mass after heating (g)
1	1.923	0.8480
2	2.004	1.281

(a) What observation suggests that the solid is a hydrated compound?

(1)

(b) Determine the percentage by mass of water in the original hydrated salt analyzed by Student 1.

(2)

(c) The samples analyzed by the students are CuSO₄.5H₂O and Na₂SO₄.10H₂O. Determine which sample was analyzed by Student 1

(2)

_						_	_			_								_									
	7	He	Heltum	10	Ne	Neon	18	Ar	Argon	38	z	Krypton	75	Xe	Xenon	8	Rn	Radon									
1				6	L	Fluorine	17	ប	Chlorine	35	Б	Bromine	8		lodine	85	At	Astatine		Earth.		11	Lu	Lutethum	103	Ž	Lawrenclum
				8	0	Oxigen	₽	S	Sulphur	7	Se S	Seturium	23	це Н	Tellurlum	1	Ро	Polonium		Iturally on		02	Ч	Ythirblum	-102	Ŷ	* wohedow
				7	Z	Ntrogen	15	٩	hosphorus	33	As	Arrenic	51	Sb	Antimony	8	ä	Biemuth		t occur nø		69	Tm	Thullum	101	PW	Mendelevium *
				8	υ	Carbon	14	Si	Silcon	32	Ge	hemanium	8	Sn	ħ	82	Pb	Lead		iich do no		88	ш	Erbium	1 8	F	Fermium .
				9	ß	Boron	13	A	Juminium	31	Ga	Galilum	84	<u>_</u>	Indium	81	F	Thailium		those wh		67	Р	Holmlum	8	Ш S	multipleteni:
							ļ		•	e S	u N	Zinc	84	b	Cadmium	80	Hg	Mercury		with * are		88	2	heproslum	86	С,	alfforntum E
Ш Г П										82	Cu	Copper	47	Ag	Silver	6/	Au	90kd		s marked		65	Tb	Terbium D	97	Ř	Bertellum +
T A I										58	Ż	Nichel	8	Рд	Pelledium	84	ጟ	Platinum		Elements		64	Ъд	Gadolinium	*	Cm	Curtum .
о С										27	ပိ	Cobelt	\$	Rh	Rhodium	11	-	Indium	109	Mt	Meltherlum	63	ШC	Europium	96	Am	Americium *
										26	Ъ	<u>P</u>	\$	Ru	Ruthenium	78	SO	Oemium	108	Hs	Hanslum	62	Sm	Semarium	8	Pu	Plutonium *
Ш										25	Mn	Manganese	43	Tc	Technetium	75	Re	Rhenium	107	ВЧ	Bohrlum	61	Pm	Promethium	83	Np	Neptunium +
										24	່ວ	Chromium	42	Mo	Molybdenum	74	3	Tungsten	106	Sg	Seaborgium	80	PN	Neodymium	82	D	Uranium
										23	>	Vanadium	4	qN	Nioblum	73	Та	Tantalum	105	QD	Dubnium	85	Ъ	Praeodymium	5	Pa	Protactinium
										22	F	Titanium	ę	Zr	Zirconium	72	Ħ	Hafnium	104	Ŗ	Rutherfordtum	8	Ce	Certum	8	Ч	Thorium
										┣			┣──				4		<u> </u>			<u> </u>			1		
										21	Sc	Scandium	39	≻	Ythum	57	La	Lanthanum	88	Ac	Actinum			mber			
				4	Be	Berytitum	12	BM	Magneelum	8	Ca	Calcium	38	Sr	Strontium	8	Ba	Berlum	88	Ra	Radium			Atomic Nu		Symbol	
	-	I	Hydrogen		:	Lithium	÷	Na	Sodium	19	X	Potaesium	37	Rb	Rubidium	8	Cs	Caesium	87	Ľ	Francium			kev	6	6	Carbon

	Symbol	Atom	ic Atomic		Symbol No.	Atomic Mas	Atomic
				No.	Mass	s	500
Actinium	Ac	89	[227]	Mercury	На	80	200 59
Aluminium	AI	13	26.98	Molybdenum	Mo	42	95 94
Americium	Am	95	[243]	Neodymium	Nd	60	144 24
Antimony	Sh	51	121 75	Neon	Ne	10	20.18
Argon	Ar	18	39 95	Nentunium	Nn	93	[237]58
Arsenic	Δs	33	74 92	Nickel	Ni	28	69
Arsenic	Δt	85	[210]	Niohium	Nb	41	92 91
Barium	Ra	56	137 34	Nitrogen	N	7	14 01
Barkolium	BL	07	107.04	Nobelium	No	102	[250]
Bonullium	Bo	1	0.012	Osmium	Os	76	100.20
Beryllutt	De	4	208 08	Osimum	03	0	16.00
Boron		63 E	200.90	Delledium		46	106.42
Boronina	D	5	70.00	Pallaulum	Pu	40	20.07
Codmium		30	112 11	Phosphorus	P D+	70	105 09
Calaium	Ca	40	112.41	Platinum		10	195.00
Calcium	Ca	20	40.00	Plutonium	Pu	94	[244]
Californium	C	90	[201]	Polonium	PO	04	[210]
Carbon	C	6	12.01	Potassium		19	39.10
Cerium	Ce	58	140.12	Praseouymium	Pr	59	140.91
Cesium	CS	22	132.91	Protectinium	Pm	01	[145]
Chiorine	CI	17	35.45	Protactimum	Ра	91	231.04
Chromium	Cr	24	52.00	Radium	ка	88	226.03
Cobalt	Co	27	58.93	Radon	Rn	86	[222]
Copper	Cu	29	63.55	Rhenium	Re	75	186.21
Curium	Cm	96	[247]	Rhodium	Rh	45	102.91
Dysprosium	Dy	66	162.50	Rubidium	Rb	37	85.47
Einsteinium	Es	99	[252]	Ruthenium	Ru	44	101.07
Erbium	Er	68	167.26	Samarium	Sm	62	150.36
Europium	Eu	63	151.96	Scandium	Sc	21	44.96
Fermium	Fm	100	[257]	Selenium	Se	34	78.96
Fluorine	F	9	190.00	Silicon	Si	14	28.09
Francium	Fr	87	[223]	Silver	Ag	47	107.87
Gadolinium	Gd	64	157.25	Sodium	Na	11	22.99
Gallium	Ga	31	69.72	Strontium	Sr	38	87.62
Germanium	Ge	32	72.61	Sulfur	S	16	32.07
Gold	Au	79	196.97	Tantalum	Та	73	180.95
Hafnium	Hf	72	178.49	Technetium	Tc	43	[98]
Helium	He	2	4.00	Tellurium	Te	52	127.60
Holmium	Ho	67	164.93	Terbium	Tb	65	158.93
Hydrogen	Н	1	1.01	Thallium	TI	81	204.37
Indium	In	49	114.82	Thorium	Th	90	232.04
lodine	1	53	126.90	Thulium	Tm	69	168.93
Iridium	lr	77	192.22	Tin	Sn	50	118.71
Iron	Fe	26	55.85	Titanium	Ti	22	47.88
Krypton	Kr	36	83.80	Tungsten	W	74	183.85
Lanthanum	La	57	138.91	Uranium	U	92	238.03
Lawrencium	Lr	103	[260]	Vanadium	V	23	50.94
Lead	Pb	82	207.20	Xenon	Xe	54	131.29
Lithium	Li	3	6.94	Ytterbium	Yb	70	173.04
Lutetium	Lu	71	174.97	Yttrium	Y	39	88.91
Magnesium	Mg	12	24.31	Zinc	Zn	30	65.39
Manganese	Mn	25	54.94	Zirconium	Zr	40	91.22*
Mendelevium	Md	101	[258]				

TABLE OF RELATIVE ATOMIC MASSES (Based on Carbon-12)

A value given in brackets denotes the mass of the longest-lived or best-known isotope,

Electro-negativity values for selected elements

(in order of Atomic Number)

Element	Electro-negativity value
Н	2.1
Не	0
Li	0.98
Be	1.57
В	2.04
С	2.55
N	3.04
0	3.44
F	3.98
Ne	0
Na	0.93
Mg	1.31
Al	1.61
Si	1.9
Р	2.19
S	2.58
Cl	3.16
Ar	0
К	0.82
Са	1
Br	2.96