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Introduction to Molecular Quantum 
Mechanics

• Brief historical overview

• Wave-particle Duality
• What is Quantum mechanics doing for us now?

• The wavefunction, Ψ
• Some background maths

• The Schroedinger Equations and some solutions
• Particle in a box, tunnelling, particle on a ring, 

the simple harmonic oscillator.

The mistake was to assume that an oscillator can have any frequency.  Planck assumed 
the oscillator must be quantised and take the value E = nhν where n is an integer and 
obtained

Which has the correct form, fits all data very well, reduces to the classical equation at 
high frequency and yields h = 6.63 x 10-34 Js, which we now call Planck’s constant.

A hot body glows.  The best classical 
explanation finds energy density/wavelength

Which clearly fails and suggest even cold 
bodies should emit a pleasing blue glow, as 
the function increases to infinity as λ � 0

The Failure of Classical Mechanics - Black 
Body Radiation
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Some Other Triumphs of QM
• You are already familiar with the photoelectric effect, where classically the observed work 

function of a metal is inexplicable
• Similarly you have seen (1c24) how the spectrum of the H atom can be perfectly explained by 

quantization.
• In the textbooks you can see that heat capacity, which is classically constant with T reduces to 0 

as T� 0, explained again by quantization.

International Solvay Conference in 1927.   Front row, left to right: I. Langmuir, M. Planck, M. Curie, H. A. Lorentz, A. Einstein, 
P. Langevin, C. E. Guye, C. T. R. Wilson, O. W. Richardson. 
Second row, left to right: P. Debye, M. Knudsen, W. L. Bragg, H. A. Kramers, P. A. M. Dirac, A. H. Compton, L. V. de Broglie, 
M. Born, N. Bohr. 
Standing, left to right: A. Piccard, E. Henriot, P. Ehrenfest, E. Herzen, T. De Donder, E. Schroedinger, E. Verschaffelt, W. Pauli, 
W. Heisenberg, R. H. Fowler, L. Brillouin

The de Broglie Hypothesis - Wave Particle 
Duality

We have pretty much accepted that photons have 
particle properties – why should not particles have 
wave like properties?

They do: Davisson and Germer bombarded a Ni 
crystal with a collimated beam of electrons.  The 
beam was diffracted from the rows of Ni atoms, 
exactly as in a Young's slit experiment.

More recently the same experiment has been 
performed with helium atoms.

In 1924 de Broglie suggested that the wavelength to be associated with a particle is 
given by

Where p is the particle momentum (mass x velocity).

p

h=λ
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De Broglie Calculations

• What wavelengths are associated with particular particles?  Let’s start with 
something small – the electron.  First we need its velocity.

• An electron is accelerated in a potential (V) of 3kV.  

• Energy is product of charge (e) and potential

• E = eV = 1.6 x 10-19 C x 3000 V = 4.8 x 10-16 J (note J ≡ VC)
• That energy is all kinetic

• 4.8 x 10-16 J = (1/2)mv2 electron mass = 9.11 x 10-31 kg

• v = 3.25 x 107 ms-1

• The momentum is p = mv = 9.11 x 10-31 kg x 3.25 x 107 ms-1 = 2.96 x 10-23

kgms-1.

• The de Broglie wavelength is λ = h/p = 6.63 x 10-34 Js / 2.96 x 10-23 kgms-1

• = 2.24 x 10-11 m

• In the X-ray region

Try one yourself

• A lead bullet of volume 2 cm3 is fired at you at a velocity of 400 ms-1.  How 
worried should you be (about the extent of delocalisation of the bullet)?  
(you may note that the density of lead is 11.3 g/cm-3)
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Does QM Still Matter?

• Many chemical, analytical (spectroscopy), material (semi-conductors) and 
biomedical (X-ray, MRI scans) phenomena are understood today only 
because QM was understood first.

• To an extent those are developments from the ‘glorious’ past of QM (let us 
brush over it sometimes less than glorious contribution to weapons 
development); what of the future?

• The future is small – nanoscience will increasingly appear in everyday life, 
through improved material properties, faster computers and more compact 
devices…

• These developments are essential to a sustainable world (smaller devices 
use less energy and put out less pollution)

• Implementation of nanotechnology poses immense scientific and social 
challenges

• The scientific challenges will require use and further development of 
quantum mechanics – QM matters!

Two Examples
Moore’s law tells us that ‘transistor 
density will double every few years’
(ditto Intel profits).
At the current level (wires ca 50 nm 
thick) quantum properties of the devices 
become important (at these sizes the de 
Broglie wavelength is significant).  Even 
the spectrum is size dependent (see 
fig.). Cd:Se ‘quantum dots which differ only in their 

particle size.
How do you know that a wire is only 50 
nm?  You can measure it by electron 
diffraction (using the de Broglie
wavelength of the electron) or by 
scanning tunnelling microscopy, a 
technique which relies on quantum 
mechanical tunnelling (see later)
For the manipulation, measurement and 
interpretation of nanoscience, we need 
QM

The image shows individual copper atoms being 
located and imaged in a ‘quantum corral’.
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Wave Particle Duality And The Heisenberg 
Uncertainty Principle

• Classically we believe we can localise a particle 
in space, e.g a particle moving in the x-direction 
can be localised at position x.

• Quantum mechanically we describe the particle 
by a wave (what we shall soon call a 
wavefunction).  We know that a single sine wave, 
for example repeats endlessly, and is not 
localised.

• However, if we add an infinte number of different 
wavelengths which all share a common origin at x 
then destructive interference will yield a 
completely localised result.

• The result of course is that complete certainty 
about x requires complete uncertainty about p!

• Heisenberg formulated his famous uncertainty 
relation as 

∆p.∆x ≥ h/4π

x

Heisenberg Uncertainty Relation – Some 
Consequences

• We can see that if either p or x are known exactly (e.g. ∆p = 0) the 
uncertainty relation requires the other partner to be infinitely uncertain (e.g. 
∆x = ∞).

• Note how this violates the underlying principles of classical mechanics –
that if the initial trajectories of the particles in a system are known the future 
of the system is completely predictable.  A quantum universe is less 
predictable – we don’t know exactly where we are going (or even exactly 
where we are).

• At a more concrete level, suppose the uncertainty in an electron’s velocity is 
3 x 105 ms-1.  What is the minimum uncertainty in its position?
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Try the following calculation

• That bullet was fired at you along the x-axis at 400 ± 1 ms-1.  How far off the 
x-axis do you need to move to be sure of getting out of its way?

• Recalling that the mass was 22.6 x 10-3 kg the maximum uncertainty in the 
momentum is

•

Where are we now?

• We can be pretty sure where we are, but less certain about electrons.
• At the microscopic or molecular level the direction or location of a particle is 

not explicable by a classical trajectory – the particle has wave like 
properties

• We will have to describe the trajectory with a wave equation, and we will 
describe the particle in terms of a wavefunction.

• We give the wavefunction the symbol Ψ.
• Ψ is pronounced psi (though sigh is sometimes heard).
• In the next few slides we will be concerned with some of the properties of 

the wavefunction.
• Next we will consider why the wavefunction has these properties, which 

requires us to engage a little with the math of quantum mechanics, and in 
particular the Schroedinger equation.

• Thus equipped we will be able to predict the properties of some simple 
systems.
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Ψ
• The wavefunction contains all there is to know about the dynamics of the 

system it describes – i.e. the momenta as a function of time of all the 
particles in the system.  Properly written Ψ(p,t).

• The Born Interpretation of the wavefunction is helpful.  Born interprets the 
wavefunction as the probability that a particle is at a given point in space.  
Specifically if Ψ has some value in a volume of space dτ (where dτ is an 
infinitesimal volume, dτ = dx.dy.dz) then the probability that the particle is 
located there is 

• Where
• Means the modulus of the wavefunction (as it may be negative) and

• Where Ψ* means the complex conjugate of the wavefunction (as it may be a 
complex function)

τd
2Ψ

Ψ

ΨΨ=Ψ *2

What does Ψ Look Like?

• If we know Ψ we can evaluate Ψ2 for all dτ, and build 
up a 3D picture of the spatial distribution of our 
particle.  You are already familiar with these – the 1s
orbital of the H atom is a good example.

• If a particle exists, then it must exist somewhere, so if 
we look (integrate) over all space the probability of 
finding the particle is 1.  Mathematically

• Where N is called the normalization factor (a 
constant).

• This gives us some more information about Ψ.  If the 
integration is to take the value 1 and N ≠ 0 (a trivial 
result) the value of Ψ can never go to infinity.  The 
wavefunction is finite everywhere (the figure shows a 
forbidden form for Ψ)

∫ =Ψ 122 τdN
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Further Properties of the Wavefunction
• The Born interpretation calculates a probability 

for a given value of Ψ at a particular position.  
Logically a particle cannot be in two places at the 
same time.  The wavefunction must be single 
valued.

• When we come to evaluate wave functions using 
the Schroedinger equation we will rake their first 
and second derivatives of the function.  These 
must be well behaved (niot go to zero or infinity).  
If you recall some basis calculus this imples that 
Ψ must have no steps or sharp kinks.  The 
wavefunction must be continuous.  Thus the 
wavefunctions shown are also not permitted.

• These restrictions severely limit the form of the 
allowed wave functions.  The particles are not 
free to be anywhere, so cannot adopt any energy 
– the energy is quantised, as in the H atom 
problem (1C24).

Multiply valued

Discontinuous

Consider the Following

• Which of these are legitimate wavefunctions?

• (a) exp(-x) for 0 < x <∞ (b) exp(-x) for -∞ < x < ∞ (c) x-1 for 0 
< x <∞

• Assume we determine Ψ = Nexp(-ax).  What is the correct 
value for the normalisation constant N.


