

The Heisenberg Uncertainty Principle revisited

Previousle (lecture 1) we stated the uncertainty principle in seemingly rather vague terms as

 $\Delta p.\Delta x \ge \hbar/2$

In reality the 'uncertainty' is rather precisely defined as the standard deviation of the quantity, where the standard deviation, σ is the square root of the variance, which is the mean of the squares minus the square of the mean

$$(\Delta x)^2 = \sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2$$

Provided we know the wavefunction, we can easily calculate the mean or expectation, values. In general for the mean of an observable g we calculate

 $\int \Psi^* \hat{G} \Psi d\tau$

Precise value of uncertainty in position is

$$(\Delta x)^{2} = \sigma_{x}^{2} = \langle x^{2} \rangle - \langle x \rangle^{2} = \left(\frac{L^{2}}{3} - \frac{L^{2}}{2\pi^{2}}\right) - \frac{L}{4}$$
$$= \frac{L^{2}}{12} - \frac{L^{2}}{2\pi^{2}}$$
or $\Delta x = L \left(\frac{1}{12} - \frac{1}{2\pi^{2}}\right)^{\frac{1}{2}}$

We can play the same game with **momentum**, e.g. if we wish to evaluate the mean momentum we need

$$\langle p_x \rangle = \int_0^L \left(\frac{2}{L}\right)^{\frac{1}{2}} \sin\frac{\pi x}{L} \cdot \frac{h}{i} \frac{d}{dx} \cdot \left(\frac{2}{L}\right)^{\frac{1}{2}} \sin\frac{\pi x}{L} dx$$
$$= \frac{2\hbar}{iL} \int_0^L \sin\frac{\pi x}{L} \frac{d}{dx} \sin\frac{\pi x}{L} dx = \frac{2\pi\hbar}{iL^2} \int_0^L \sin\frac{\pi x}{L} \cos\frac{\pi x}{L} dx$$

Which evaluates as zero!

No surprise, the particle has as much probability as going in the -x as the x direction, so the average must be zero.

Precise value of uncertainty in momentum is...

The relevant operator is $-\hbar^2(d^2/dx^2)$, so, using the same wavefunction the integral to be evaluated is of sin²ax, which we have used before. Placing the proper limits yields

$$\left\langle p_x^2 \right\rangle = \frac{\pi^2 \hbar^2}{L^2} \text{ thus}$$
$$\left(\Delta p_x\right)^2 = \frac{\pi^2 \hbar^2}{L^2} - 0^2 = \frac{\pi^2 \hbar^2}{L^2}$$
$$\Delta p_x = \frac{\pi \hbar}{L}$$

So finally we can find

$$\Delta x \Delta p_x = L \left(\frac{1}{12} - \frac{1}{2\pi^2} \right)^{\frac{1}{2}} \frac{\pi \hbar}{L} = 0.57\hbar$$

In agreement with the uncertainty principle.

More Generally...

We can see that the uncertainty in position is a linear function of L, so for a longer box the uncertainty in position increases.

The converse is true for momentum, the uncertainty in momentum is largest for a small box. Thus there is a transfer of uncertainty as the box gets longer.

For the *n*th level of the 1D box we can find

$$\Delta x \Delta p_x = \hbar \left[\frac{n^2 \pi^2}{12} - \frac{1}{2} \right]^{\frac{1}{2}}$$

From which we conclude that the minimum uncertainty is for the lowest energy

Generalised uncertainty Principle

The uncertainty principle is even more general than we have implied. It does not only apply to position and momentum, but to any pair of complementary observables. A pair of observable are complementary if their operators do not commute. That is the order in which they are applied to the wavefunction makes a difference to the result. Mathematically

$$\hat{G}_1(\hat{G}_2\Psi) \neq \hat{G}_2(\hat{G}_1\Psi)$$

It is easy to see that this applies to position and momentum – which have multiplication and differentiate operators respectively. It makes a difference if you multiply by x before or after differentiation. In quantum mechanics we make use of the commutator

$$\left[\hat{G}_{1},\hat{G}_{2}\right] = \hat{G}_{1}\hat{G}_{2} - \hat{G}_{2}\hat{G}_{1}$$

and the most general uncertainty principle is

$$\Delta g_1 \Delta g_2 \ge \frac{1}{2} \left| \left\langle \left[\hat{G}_1, \hat{G}_2 \right] \right\rangle \right|$$

Another important pair of complementary pairs is Energy and Time.

Conclusion

- The uncertainty principle is a rather precise tool.
- It does not make quantum mechanics, or spectroscopy, or molecular structure, or anything else 'fuzzy'.
- On the contrary it puts precise limits on what we can know (and not know) about a system.