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The Born Oppenheimer Approximation
• We have solved for a set of energies as a function 

of nuclear coordinates (the SHO).
• We have done the same for electron energy levels 

(e.g. the pi electrons in the polyene box).
• In general then we have to solve a Schrödinger 

equation for molecules where the wavefunction 
has both nuclear and electronic coordinates.  This 
is very hard (terms in electron and nuclear KE!)

• Fortunately nuclei move much more slowly than 
electrons (ca 1000 times).  This means that we 
can regard the nuclei as fixed while we calculate 
the electron energies (bond strength, electronic 
spectra, etc.) associated with that nuclear 
configuration.

• This is called the Born-Oppenheimer 
approximation – the separation of electronic and 
nuclear motion.

• If we calculate the electron energy for each (fixed) 
set of nuclear coordinates we end up with the 
potential energy surface.

Schroedinger Equation For the Hydrogen 
Atom

Difficulties?

There are two particles (therefore 2 sets of 
coordinates) to deal with.  We can show that this is 
not really a problem – locate the origin of the 
coordinate system on one particle (e.g. the proton) 
and only look at relative position of the electron.

The potential term is now distant dependent (it is a 
Coulomb potential).  This makes the math hard.

We have to worry about motion in 3D (x.y.z
coordinates).  It turns out to be easier to think in 
terms of N-e distance r and TWO polar angles (Θ, 
Φ).
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Leaving us to solve the Schroedinger
equation…
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Where the Ze2/r represents the coulombic attraction.

The equation has no less than three variables!

The solution is monumentally tedious, but involves breaking the equation down into 
three separate differential equations, each with only one variable, solving each, and 
then multiplying out the product.

The result is a keystone of chemistry, the atomic wavefunctions, whose form is well 
known.

Note that any more complex atomic problem is not exactly solvable – basically it is 
impossible to take into account the electron – electron terms.  For the He atom and 
anything larger we rely on approximate methods (which are actually incredibly 
accurate, even for large molecules).

End of the line for exactly solvable 
Schrödinger equations…
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The Heisenberg Uncertainty Principle 
revisited

( ) 2222 xxx x −==∆ σ

∆p.∆x ≥ ħ/2

Previousle (lecture 1) we stated the uncertainty principle in seemingly rather 
vague terms as

In reality the ‘uncertainty’ is rather precisely defined as the standard deviation of 
the quantity, where the standard deviation, σ is the square root of the variance, 
which is the mean of the squares minus the square of the mean

Provided we know the wavefunction, we can easily calculate the mean or 
expectation, values.  In general for the mean of an observable g we calculate

∫ ΨΨ τdĜ*
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=ΨRestricting ourselves to the particle in a box, with n = 1 so 

We determined earlier that <x> = L/2, as expected.

What about <x2>?  We need to evaluate the following
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Precise value of uncertainty in position is
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We can play the same game with momentum, e.g. if we wish to evaluate the 
mean momentum we need
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Which evaluates as zero!
No surprise, the particle has as much probability as going in the –x as the x
direction, so the average must be zero.

Precise value of uncertainty in momentum 
is…
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The relevant operator is –ħ2(d2/dx2), so, using the same wavefunction the 
integral to be evaluated is of sin2ax, which we have used before.  Placing the 
proper limits yields

So finally we can find
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In agreement with the uncertainty principle.



5

More Generally…

We can see that the uncertainty in position is a linear function of L, so for a 
longer box the uncertainty in position increases.

The converse is true for momentum, the uncertainty in momentum is largest 
for a small box.  Thus there is a transfer of uncertainty as the box gets 
longer.

For the nth level of the 1D box we can find
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From which we conclude that the minimum uncertainty is for the lowest energy

Generalised uncertainty Principle
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The uncertainty principle is even more general than we have implied.  It does not 
only apply to position and momentum, but to any pair of complementary 
observables. A pair of observable are complementary if their operators do not 
commute. That is the order in which they are applied to the wavefunction makes 
a difference to the result.  Mathematically

It is easy to see that this applies to position and momentum – which have 
multiplication and differentiate operators respectively.  It makes a difference if 
you multiply by x before or after differentiation.  In quantum mechanics we make 
use of the commutator
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Another important pair of complementary pairs is Energy and Time.
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Conclusion

• The uncertainty principle is a rather 
precise tool.

• It does not make quantum mechanics, or 
spectroscopy, or molecular structure, or 
anything else ‘fuzzy’.

• On the contrary it puts precise limits on 
what we can know (and not know) about a 
system.


