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Quantum Mechanical Tunnelling

• A particle is incident on a potential barrier
• Classically if the kinetic energy exceeds the height of the 

potential barrier the particle will cross
• Conversely if the particle does not have sufficient energy 

it will bounce back.
• Quantum mechanically things (as you might have 

guessed) are not so simple.
• The particle may tunnel through the barrier and appear 

in a ‘classically forbidden’ region of space.
• This is an extremely important effect in chemical kinetics 

(electron and proton transfer) and spectroscopy (it is the 
basis of the scanning tunnelling microscopy mentioned 
earlier).

Setting up the problem

The particle travels from left to right in a region of zero potential (a 1 way free 
particle).
It encounters a region of thickness L in which the potential energy = V.
The particle has a finite probability of transmission through the barrier, where it 
enters another region of V = 0.
What is the transmission probability?
To complete the calculation we need the wavefunction in three regions, I, II, III.
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Free Particle Region I

ikxikx ecec −+=Ψ 21

It is useful to look at the free particle solution (exponential form) in more detail.

Do the two separate terms have separate significance?  Let c1 = 0, solve 
the Schroedinger equation for observable momentum, px.
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c1 = 0 corresponds to a particle moving along –x, c2 = 0 to a particle in the plus x
direction

The wavefunctions
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Region I – simply the free particle solution.

The interesting case is when E < V (when classical transmission is 
forbidden).  In this case the solution to the differential equation (see free 
particle problem) is purely real.
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Region II – set up the free particle Schroedinger equation, but with potential 
V and observable E.

The real solution comes from the sign change due to the finite V.  
The relevant constants are
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The wavefunctions
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+=Ψ −Region III – mathematically, simply the free 
particle solution again, and kI = kIII (same 
mass).  However, we know the particle 
must travel in the positive x direction, so c6
= 0.

This is not true in region I.  Particles not 
transmitted are reflected, so c2 ≠ 0

In summary we have complex 
oscillating wavefunctions in 
regions I and III, and an 
exponentially decaying real 
wavefunction in II

I II III

Boundary Conditions
The wavefunction must be continuous.  ‘No steps’ requires ΨI(x = 0) = ΨII(x = 
0) and ΨII(x = L) = ΨIII(x = L), which yields

c1 + c2 = c3 + c4 at x = 0 and, at x = L,  c3exp(ikIIL) + c4exp(-ikIIL) = c5exp(ikIL)

‘No kinks’ requires that the first derivative of the wavefunction is continuous 
at the boundaries.

ikIc1 – ikIc2 = kIIc3 – kIIc4 at x = 0 and, at x = L , 

c3kiiexp(kiiL) – c4kiiexp(-kiiL) = -c5ikIexp(-ikIL)

This calculations gives us the proper form 
of the wavefunction, but also allows us to 
solve for the transmission, for a given L 
and kII
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The Transmission
The probability of a particle travelling towards the barrier is given by (ΨI)2 with 
c2 = 0, which is proportional to c1

2..

The probability of a particle moving away from the barrier is given by (ΨIII)2

which is proportional to c5
2.

The probability of transmission is given by the ratio of these two.  This can be 
obtained from the relations between them arising from the boundary 
conditions.
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Transmission
The probability of transmission is a 
strong function of the thickness of the 
barrier

The probability of transmission is a 
strong function of the mass of the 
particle (electrons >>>> protons)
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Transmission – The case E > V

Classically if a particle has the energy to surmount the barrier it does so.

Quantum mechanically this is not true (the wavefunction for the free particle 
changes for V ≠ 0).  Thus reflection may occur for E > V!

The transmission probability is oscillatory for E > V because ΨII is complex again.

Calculate the transmission 
probability of an electron.
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Let the barrier height be 1.6 x 10-19 J and the electron energy such that E/V
= 0.9.  We will require the electron mass (9.11 x 10-31 kg) and the value of ħ
(1.05 x 10-34Js) and assume a barrier length of 0.1 nm.
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Using L = 10-10m

i.e. a rather high probability of transmission.



6

…and for a proton?
The proton mass is 1.67 x 10-27 kg

Scanning Tunnelling Microscopy
It is easy to show that for kIIL >>1 the tunnelling probability reduces to 
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There is thus an exponential dependence on the barrier thickness

Imagine a metal shard tapering to atomic dimensions, placed as close as 
possible to a metal surface.  Electrons will tunnel between surface and tip, 
and the ‘tunnelling current’ can be measured.  Because of the exponential 
dependence on L (see above) the resolution of the in the x and y plane will 
be on the scale of atomic size, and better than that in the z direction.

Measuring the tunnelling current for a tip held a very small very precise 
distance above the surface as it moves in the xy plane yields an atomic 
scale picture of the surface.
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Pictorially

STM image of Pt(111) crystal 
surface.  The dark spot is a C 
atom impurity.

Vibrational Motion: The Quantum Simple 
Harmonic Oscillator

• Vibrational motion was described in 1C24 as simple 
harmonic motion.

• The model worked well in explaining relations between 
observed frequencies in IR spectroscopy and bond 
strength.

• It does not tell us why the observed vibrational lines are 
so narrow (in energy terms).

• The classical SHO cannot explain the existence of bands 
at twice the frequency, or, in molecules, bands at the 
sum of two frequencies, etc.

• A much more complete understanding of vibrational 
spectra is available from the quantum SHO and (better 
still) the quantum anharmonic oscillator.
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The Schroedinger equation for the SHO
As we displace a pendulum from rest we increase its potential energy.  When 
we release it the PE converts to KE

The KE is maximum as the pendulum goes through zero displacement, and 
reaches zero at the turning point.

Recalling that for harmonic motion the restoring force is proportional to 
displacement

F = -κx where κ is the force constant

And the force is given by F = -dV/dx

We have the potential energy V = (1/2)κx2

And the classical Hamiltonian H = (1/2)mv2 + (1/2)κx2

The Schroedinger equation for the SHO
Expressing KE in terms of momentum, then momentum and position in operator 
forms yields
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The SHO wavefunctions
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These are more complicated than we have dealt with before.  The 
Normalisation constant depends on v.  For v = 0 we find

Note for v = 0 the wavefunction is a Gaussian 
(bell shape) while for the others there are v
nodes.

The SHO wavefunctions
For insight into the properties of the SHO the probability distributions are 
informative.  They are calculated from the square of the wavefunction (The 
SHO wavefunctions being real)

It is apparent that as v increases the particle spends more time at the turning 
points.  This is similar to the classical particle (and very similar for v > 20).  
However for v = 1 the particle is never at the resting point (x = 0 is a node).



10

Energy Levels of the SHO
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By substituting the results for the wavefunction for v = 0 back in to the 
Schrödinger equation, completing the double differentiation and cancelling the 
result with the potential part we recover

Notice that each successive energy level is 
equally spaced (by ħω).

That the lowest allowable state (v = 0) has a 
finite energy.  The particle is never at rest.  
This is a consequence of the uncertainty 
principle.

Evaluating Ψ0 at the classical turning point 
shows also that the particle tunnels into 
classically forbidden regions (negative KE!)

SHO Summary

• The quantum SHO does a good job of describing simple 
vibrations in diatomic molecules.

• Force constants can again be calculated, using ω = 
(κ/m)1/2.

• Extensions of the theory account for the appearance of 
bands in molecules at the sum of 2 vibrational 
frequencies (combination bands).

• The theory is inadequate for describing the stretching of 
chemical bonds at large extension (large x).

• In such cases the motion is anharmonic.  This requires a 
further Schroedinger calculation using the ‘Morse 
Potential Energy Surface’


