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Some other manipulations with 
wavefunctions: orthogonality

∫ =ΨΨ 02
*
1 τd

If two eigenfunctions of the same operator are associated with different 
eigenvalues then the two eigenfuntions must be orthogonal.

What does it mean?????

Two valid wavefunctions giving different energies have a net overlap of 
zero.

This condition again severely limits the 
number of allowed wavefunctions.

Some other manipulations with 
wavefunctions: mean values

∫ ΨΨ τdĜ*

A further very useful piece of information we may extract from the wavefunction is 
the mean value of an observable.

To do this we evaluate the integral over all space of the complex conjugate of the 
wavefunction x the operation of the operator of the observable on that 
wavefunction, or, more succinctly

Where it has been assumed the wavefunction is normalised

What is the average position of the particle in the n = 1 level of a particle in a box?

 then) theresurprise (no
2

partsby 

sin
2

sin
2

sin
2

0

2

0

L

dx
L

x
x

L
dx

L

x

L
x

L

x

L

LL

=

•=•• ∫∫
πππ



2

Some other manipulations with 
wavefunctions: Probabilities

We interpret the integral over ΨΨ* as the probability. If we put limits on the 
integral we can find the likelihood that our particle is in a particular region.

What is the probability of finding the particle in the middle third of the box in 
the n = 1 state?

We need to integrate ΨΨ* between L/3 and 2L/3
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What have we learned?

• We can set up the Schroedinger equation for a simple system, and 
solve it.

• We can determine the form of the wavefunctions.
• We can calculate the energy levels of that system.
• We find that the energy levels reveal a rich energy structure, 

compared to the uninteresting classical results.
• We can take the wavefunctions and use them to calculate the mean

value of any observable and the probability of finding our particle 
within particular bounds.

• Can we apply it to any significant chemical system?
• Yes – the electronic spectroscopy of polyenes are quite well 

represented by this model.
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Electronic Spectra of Polyenes
We can treat polyenes as electrons in 1D boxes, with some 
assumptions

- The electron moves in 1D (polyenes are slightly nonlinear)
- Electrons move independently (they don’t but, as we see 

it’s near enough).
- Electrons fill levels according to the Pauli principle (2 per 

level).

Consider the electronic spectra of butadiene (CH2CH2CH2CH3).
- Take the average carbon-carbon bond length as 0.14 nm.
- There are 4 π electrons, filling the n = 1 and 2 levels.
- What is the energy of the first transition (n = 2 � n = 3)?

The Calculation is Straightforward
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We will need the mass of the electron (9.11 x 10-31 kg), the value of ħ (1.05 x 
10-34 Js) and the length of the box (=4 x 0.14 nm = 0.56 nm).

Using E = hν we find ν = 1.43 x 1015 s-1 and ν = c/λ we find λ = 208 nm

The experimental value is 217 nm, excellent agreement!
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One swallow does not a summer make – try 
retinal

retinal is involved in many important photobiological reactions.  It has 12 
conjugated carbon atoms (6 double bonds).  Calculate the wavelength of the 
first absorption.

Other quantised systems
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Motion in 2D and 3D boxes.  The treatment is the same, but the results more 
complex, e.g. for a 3D box

Rotational Motion – imagine a particle moving on a frictionless ring of radius r in 
the xy plane.   Again we have V = 0, and kinetic energy J2/2I, where J is the 
angular momentum and I the moment of inertia.  To obtain the Hamiltonian we can 
work in 2 Cartesian coordinates of one polar coordinate

Where the angles are defined in the fihure.  The 
latter is clearly easier to deal with.
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Other quantised systems
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Other quantised systems

• Later we will see that vibrational motion is 
quantised.

• We will not show here that an extension of the 
particle in a ring argument to the Hydrogen atom 
(including a Coulombic V term) yields an exactly 
solvable Schroedinger equation,  This is turn 
yields the wavefunctions of the H atom, the s, p, 
d… orbitals, and hence all of molecular 
structure.

• Next we consider the problem of quantum 
mechanical tunnelling.


