

One swallow does not a summer make – try retinal

retinal is involved in many important photobiological reactions. It has 12 conjugated carbon atoms (6 double bonds). Calculate the wavelength of the first absorption.

Other quantised systems

Motion in 2D and 3D boxes. The treatment is the same, but the results more complex, e.g. for a 3D box $\binom{n^2}{n^2}$ $\binom{n^2}{n^2}$ $\binom{n^2}{n^2}$

F -	(n_1^2)	n_{2}^{2}	n_{3}^{2}	\hbar^2
	$\overline{L_1^2}$	$\overline{L_2^2}$	$\overline{L_3^2}$	2m

Rotational Motion – imagine a particle moving on a frictionless ring of radius *r* in the xy plane. Again we have V = 0, and kinetic energy $\mathcal{J}/2I$, where *J* is the angular momentum and *I* the moment of inertia. To obtain the Hamiltonian we can work in 2 Cartesian coordinates of one polar coordinate

$$\hat{H} = \frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \text{ or } \frac{-\hbar^2}{2I} \frac{d^2}{d\phi^2}$$

Where the angles are defined in the fibure. The latter is clearly easier to deal with.

