Some other manipulations with
wavefunctions: orthogonality

If two eigenfunctions of the same operator are associated with different
eigenvalues then the two eigenfuntions must be orthogonal.

Two valid wavefunctions giving different energies have a net overlap of
zero.
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This condition again severely limits the
number of allowed wavefunctions.

Some other manipulations with
wavefunctions: mean values

A further very useful piece of information we may extract from the wavefunction is
the mean value of an observable.

To do this we evaluate the integral over all space of the complex conjugate of the

wavefunction x the operation of the operator of the observable on that
wavefunction, or, more succinctly
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Where it has been assumed the wavefunction is normalised

What is the average position of the particle in the n = 1 level of a particle in a box?
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Some other manipulations with
wavefunctions: Probabilities

We interpret the integral over WYW* as the probability. If we put limits on the
integral we can find the likelihood that our particle is in a particular region.

What is the probability of finding the particle in the middle third of the box in
the n = 1 state?

We need to integrate WW* between L/3 and 2L/3
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What have we learned?

We can set up the Schroedinger equation for a simple system, and
solve it.

We can determine the form of the wavefunctions.

We can calculate the energy levels of that system.

We find that the energy levels reveal a rich energy structure,
compared to the uninteresting classical results.

We can take the wavefunctions and use them to calculate the mean
value of any observable and the probability of finding our particle
within particular bounds.

Can we apply it to any significant chemical system?

Yes — the electronic spectroscopy of polyenes are quite well
represented by this model.




Electronic Spectra of Polyenes

We can treat polyenes as electrons in 1D boxes, with some
assumptions

- The electron moves in 1D (polyenes are slightly nonlinear)

- Electrons move independently (they don't but, as we see
it's near enough).

- Electrons fill levels according to the Pauli principle (2 per
level).

Consider the electronic spectra of butadiene (CH,CH,CH,CH,).
- Take the average carbon-carbon bond length as 0.14 nm.
- There are 4 rrelectrons, filling the n = 1 and 2 levels.
- What is the energy of the first transition (n =2 > n = 3)?

The Calculation is Straightforward

We will need the mass of the electron (9.11 x 103 kg), the value of 7 (1.05 x
10-34 Js) and the length of the box (=4 x 0.14 nm = 0.56 nm).
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Using E = hvwe find v=1.43 x 10> s1and v=c/ we find A =208 nm

The experimental value is 217 nm, excellent agreement!




One swallow does not a summer make — try
retinal
retinal is involved in many important photobiological reactions. It has 12

conjugated carbon atoms (6 double bonds). Calculate the wavelength of the
first absorption.

Other quantised systems

Motion in 2D and 3D boxes. The treatment is the same, but the results more
complex, e.g. for a 3D box 2 2 2 2
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Rotational Motion — imagine a particle moving on a frictionless ring of radius r in
the xy plane. Again we have V = 0, and kinetic energy J2/21, where J is the
angular momentum and | the moment of inertia. To obtain the Hamiltonian we can
work in 2 Cartesian coordinates of one polar coordinate
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Where the angles are defined in the fihure. The
latter is clearly easier to deal with.
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Other quantised systems
TheSchroedingrequatiorbecomes
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Other quantised systems

* Later we will see that vibrational motion is
quantised.

* We will not show here that an extension of the
particle in a ring argument to the Hydrogen atom
(including a Coulombic V term) yields an exactly
solvable Schroedinger equation, This is turn
yields the wavefunctions of the H atom, the s, p,
d... orbitals, and hence all of molecular
structure.

» Next we consider the problem of quantum
mechanical tunnelling.




