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Consider the Following

Determining Ψ - Solving the Schroedinger
Equation.

• The wavefunction clearly contains vital information – how can we 
extract it?

• Schroedinger showed that the wavefunction is a solution to special 
kind of wave equation, which we now call the Schroedinger equation

Ψ=Ψ EĤ
• This is actually the time independent Scroedinger equation.  There is a time 

dependent version which will not concern us here.
• The symbol ‘H hat’ is the Hamiltonian operator (see below) and E is the 

energy.
• This is a type of equation known as an eigenvalue equation, of the general 

form

• G hat is an operator, f an eigenfunction and g a constant called the 
eigenvalue of the operator G.

gffG =ˆ



2

Eigenvalue Equations - Operators

• Operators (unsurprisingly) operate on a function.  For example
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• But neither of these are proper eigenvalue equations, which require the 
result of ‘operation on f’ to be gf, a constant times f Let’s try another 
example
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• After a little thought

Choosing the Operator
• One of the postulates of quantum mechanics is that for every observable 

there is a corresponding operator.  

• In chemistry we are mainly interested in energy, E.  For all the problems we 
will encounter the energy can be expressed in terms of momentum and 
position, so we need the operators for x and p.
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Setting Up the Schroedinger Equation –
Free Particle Problem

Ψ=Ψ EĤ
‘H hat’ is the Hamiltonian, the operator for the observable energy, E
The total energy is kinetic (T) plus potential (V), so classically H = T+V
We cast these in their quantum mechanical operator form
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For a free particle V(x) = 0, so the Schroedinger equations simplifies ro
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A differential equation, which you have to solve for Ψ

Might now be a good time to revise some maths?
Clearly some calculus is going to be needed.  It will be useful to remember the 
following results, where C is a constant of integration.

Function, f(x) Differential wrt to x Integral over x
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The log form is often useful
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In many cases we make use of definite integration
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We will also have to make use of COMPLEX NUMBERS

e.g. z = x+iy in which z is complex, x the’ real part’, y the ‘imaginary part’
(both real numbers) and i = √-1.  Generally complex numbers conform to 
the rules of ordinary arithmetic.

To form the complex conjugate of a function f, f*, replace i with -i wherever 
it occurs, so z = x + iy, z* = x - iy

Note that zz* = x2 + y2, so is always real (so even if a wavefunction is 
complex ΨΨ*, the probability, is real).

Finally we will find Eulers relation very useful. θθθ sincos iei −=

The form of the Schroedinger equation 
suggests that we look at differential equations
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The 2nd order homogeneous equation

Has solutions of the form y = eλx

By substitution we obtain

Which for λ ≠ x≠ 0 has solutions when 
the quadratic in brackets = 0, thus

The general solution is always a 
combination of these two

xx ececy 21
21

λλ +=

A very important case is a = 0, b = ω2
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Which (see above) has the general 
solution
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Or, using Euler’s relation
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Back to the free particle problem
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We found the appropriate form of the Schroedinger equation to be

Which we can re-write as

We now know the solution to be

kxdkxd sincos 21 +=Ψ

Which is fine, but we need to know values for d1 and d2.  These can often 
be found by imposing boundary conditions, e.g. Ψ = 0 when x = 0.  This 
yields Ψ = d1coskx.  The wave function is a simple sine wave.
This places no restrictions on the value of k, which means E can take any 
positive value.  Thus for a free particle energy is unquantised.

Some practice with eigenvalue equations
Which of the following three is an acceptable eigenfunction of the operator 
d/dx?  What is the eigenvalue?
(a) sinx (b) kx2 (c) ekx

Show that f = a.exp(-bx) is an eigenfunction of the operator d2/dx2

Normalise the 
above wavefunction.
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A Recipe for Quantum Mechanical 
Calculations

• Write down the total (kinetic plus potential) energy in 
terms of momentum and position

• Place it in the operator form to yield the Hamiltonian 
operator.

• Solve the resultant Schroedinger for the wavefunction, 
(using any relevant boundary conditions)

• Check that the result is normalised

Application – A Particle in a 1-Dimensional 
Box
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A particle is trapped between infinitely high potential 
energy barriers at x = 0 and x = L (i.e in a box of length 
L).  Between 0 and L the potential energy is zero.

The kinetic energy is p2/2m, and the potential energy 
is zero or infinite depending on location

Between -∞ and 0 and L and ∞ V = ∞, which requires 
the operator V = ∞.  That requires the solution either 
E = ∞ (impossible) or Ψ = 0 in that region (possible).

Between 0 and L we need only consider the kinetic energy (V = 0).  Thus the 
Schroedinger equation is the same as for the free particle problem
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The constants d1 and d2
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We can specify the wavefunction a little more precisely, using some 
boundary conditions.  
We know that Ψ must be continuous, so that  (a) Ψ = 0 at x = 0 and 
(b) Ψ = 0 at x = L  What does this imply for our wavefunction?

(a) 

(b)

The Solutions
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We have obtained an expression for the energy from kL = nπ, sub for k, 
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We also have a (nearly) complete wavefunction (which is pure real) 

Which can be completed by substituting for E and using the normalisation condition

The energy is quantized (n dependence, n = 1,2,…) and the energy 
depends on the size of the box
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Properties of the solutions: Energies

The particle in a box can only occupy certain discrete 
energy levels, n = 1,2,3…

This is a quite different result to that for a classical 
particle (where any energy is allowed) and for a free 
particle (which is unquantised).

The energy increases for increasing n

The separations between the energy levels is larger 
for larger n.

Properties of the solutions: Wavefunctions

For n = 1 the wavefunction has a maximum at x = 
L/2
For n = 2 the wavefunction goes through zero at 
L/2
Which is referred to a a node.
Again very different to the classical result

Consequently, for n = 1 the probability of finding 
the particle at L/2 is large, but for n = 2 it is zero.

For very large n the probability of finding the 
particle is the same throughout L, as it is for a 
classical particle.  This is an example of the Bohr 
correspondence principle – for large quantum 
numbers QM recovers the classical result.


