Consider the Following

Determining Ψ - Solving the Schroedinger Equation.

- The wavefunction clearly contains vital information - how can we extract it?
- Schroedinger showed that the wavefunction is a solution to special kind of wave equation, which we now call the Schroedinger equation

$$
\hat{H Y}=\vec{H}
$$

- This is actually the time independent Scroedinger equation. There is a time dependent version which will not concern us here.
- The symbol ' H hat' is the Hamiltonian operator (see below) and E is the energy.
- This is a type of equation known as an eigenvalue equation, of the general form

$$
\hat{G} f=g f
$$

- G hat is an operator, f an eigenfunction and g a constant called the eigenvalue of the operator G.

Eigenvalue Equations - Operators

- Operators (unsurprisingly) operate on a function. For example

$$
f=2 x \quad \hat{G}=x x \text { (i.e. ' } x \text { times') so } \quad \hat{G} f=2 x^{2}
$$

alternatively

$$
f=2 x \quad \hat{G}=\frac{d}{d x} \text { (i.e.' differentiate wrt } x^{\prime} \text {) } \quad \hat{G} f=2
$$

- But neither of these are proper eigenvalue equations, which require the result of 'operation on f to be $g f$, a constant times f Let's try another example
- After a little thought

$$
\hat{G}=7 \frac{d}{d x}+5 \quad f=e^{x}
$$

Choosing the Operator

- One of the postulates of quantum mechanics is that for every observable there is a corresponding operator.
- In chemistry we are mainly interested in energy, E. For all the problems we will encounter the energy can be expressed in terms of momentum and position, so we need the operators for x and p.

observable	symbol	Operator form
Position	x (or y or $z)$	\hat{x}
Momentum in x direction	p_{x}	$\frac{\hbar}{i} \frac{\partial}{\partial x}$
Kinetic Energy, x direction	$\frac{m v^{2}}{2}=\frac{p_{x}^{2}}{2 m}$	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
Potential energy, x coord.	V	$V(x)$

Setting Up the Schroedinger Equation Free Particle Problem

$$
\hat{H} \Psi=E \Psi
$$

' H hat' is the Hamiltonian, the operator for the observable energy, E
The total energy is kinetic (T) plus potential (V), so classically $H=T+V$
We cast these in their quantum mechanical operator form

$$
\hat{T}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \quad V \rightarrow V(x) \quad \hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

Thus
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V(x) \Psi=E \Psi \quad$ or $\quad-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+[V(x)-E] \Psi=0$
For a free particle $\mathrm{V}(\mathrm{x})=0$, so the Schroedinger equations simplifies ro

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=E \Psi
$$

A differential equation, which you have to solve for Ψ

Might now be a good time to revise some maths?

Clearly some calculus is going to be needed. It will be useful to remember the following results, where C is a constant of integration.

$$
\begin{array}{ccc}
\text { Function, } \boldsymbol{f}(\boldsymbol{x}) & \text { Differential wrt to } \boldsymbol{x} & \text { Integral over } \boldsymbol{x} \\
\text { constant, } c & 0 & c x+C \\
x^{a} & a x^{a-1} & \frac{x^{a+1}}{a+1}+C \\
\sin a x & a \cos a x & -\frac{1}{a} \cos a x+C \\
\cos a x & -a \sin a x & \frac{1}{a} \sin a x+C \\
e^{a x} & a e^{a x} & \frac{1}{a} e^{a x}
\end{array}
$$

The log form is often useful
$\frac{d}{d x} \ln a x=\frac{1}{x} \quad \int \frac{d x}{x}=\ln x+C$
In many cases we make use of definite integration
$\int_{a}^{b} f d x=[F(x)]_{x=a}^{x=b}=F(b)-F(a) \quad e . g . \int_{2}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{2}^{3}=\frac{27}{3}-\frac{9}{3}=\frac{19}{3}$
We will also have to make use of COMPLEX NUMBERS
e.g. $z=x+i y$ in which z is complex, x the' real part', y the 'imaginary part' (both real numbers) and $i=\sqrt{ }-1$. Generally complex numbers conform to the rules of ordinary arithmetic.
To form the complex conjugate of a function f, f^{*}, replace i with $-i$ wherever it occurs, so $z=x+i y, z^{*}=x-i y$
Note that $z z^{*}=x^{2}+y^{2}$, so is always real (so even if a wavefunction is complex $\Psi \Psi^{\star}$, the probability, is real).
Finally we will find Eulers relation very useful. $\quad e^{i \theta}=\cos \theta-i \sin \theta$

The form of the Schroedinger equation suggests that we look at differential equations

The $2^{\text {nd }}$ order homogeneous equation
$\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0$
Has solutions of the form $y=e^{\lambda x}$
By substitution we obtain
$e^{\lambda x}\left(\lambda^{2}+a \lambda+b\right)=0$
Which for $\lambda \neq x \neq 0$ has solutions when the quadratic in brackets $=0$, thus
$\lambda_{1,2}=\frac{1}{2}\left(-a \pm \sqrt{a^{2}-4 b}\right)$
$y_{1}=e^{\lambda_{1} x} \quad y_{2}=e^{\lambda_{2} x}$
The general solution is always a
combination of these two
$y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}$

A very important case is $a=0, b=\omega^{2}$
$\frac{d^{2} y}{d x^{2}}+\omega^{2} y=0$
Which (see above) has the general solution
$y=c_{1} e^{i \omega x}+c_{2} e^{-i \omega x}$
Or, using Euler's relation
$y=d_{1} \cos \omega x+d_{2} \sin \omega x$

Back to the free particle problem

We found the appropriate form of the Schroedinger equation to be

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=E \Psi
$$

Which we can re-write as

$$
\begin{aligned}
& \frac{\partial^{2} \Psi}{\partial x^{2}}+k^{2} \Psi=0 \\
& k^{2}=\frac{2 m E}{\hbar^{2}}
\end{aligned}
$$

We now know the solution to be

$$
\Psi=d_{1} \cos k x+d_{2} \sin k x
$$

Which is fine, but we need to know values for d_{1} and d_{2}. These can often be found by imposing boundary conditions, e.g. $\Psi=0$ when $x=0$. This yields $\Psi=d_{1} \cos k x$. The wave function is a simple sine wave.
This places no restrictions on the value of k, which means E can take any positive value. Thus for a free particle energy is unquantised.

Some practice with eigenvalue equations

Which of the following three is an acceptable eigenfunction of the operator d / dx ? What is the eigenvalue?
(a) $\sin x$ (b) $k x^{2}$ (c) $e^{k x}$

Show that $f=a \cdot \exp (-b x)$ is an eigenfunction of the operator $d^{2} / d x^{2}$

Normalise the
above wavefunction.

A Recipe for Quantum Mechanical Calculations

- Write down the total (kinetic plus potential) energy in terms of momentum and position
- Place it in the operator form to yield the Hamiltonian operator.
- Solve the resultant Schroedinger for the wavefunction, (using any relevant boundary conditions)
- Check that the result is normalised

Application - A Particle in a 1-Dimensional

Box

A particle is trapped between infinitely high potential energy barriers at $x=0$ and $x=L$ (i.e in a box of length L). Between 0 and L the potential energy is zero.

The kinetic energy is $p^{2} / 2 m$, and the potential energy is zero or infinite depending on location

Between $-\infty$ and 0 and L and $\infty V=\infty$, which requires the operator $V=\infty$. That requires the solution either
 $E=\infty$ (impossible) or $\Psi=0$ in that region (possible).

Between 0 and L we need only consider the kinetic energy ($V=0$). Thus the Schroedinger equation is the same as for the free particle problem
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=E \Psi \quad$ Which we know solves as $\quad \begin{aligned} & \Psi=d_{1} \cos k x+d_{2} \sin k x \\ & k=\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}\end{aligned}$

The constants d_{1} and d_{2}

We can specify the wavefunction a little more precisely, using some boundary conditions.
We know that Ψ must be continuous, so that (a) $\Psi=0$ at $x=0$ and (b) $\Psi=0$ at $x=L$ What does this imply for our wavefunction?
(a) $\quad \Psi=d_{1} \cos k x+d_{2} \sin k x=0$ when $\quad x=0$
$d_{1} \cos k 0+d_{2} \sin k 0=d_{1}+0=0$
$d_{1}=0$
(b)
$\Psi=d_{2} \sin k x=0$ when $\quad x=L$
$d_{2} \sin k L=0$ when $\quad k L=n \pi$
and n is an integer

The Solutions

We have obtained an expression for the energy from $k L=n \pi$, sub for k, rearrange

$$
E=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}
$$

The energy is quantized (n dependence, $n=1,2, \ldots$) and the energy depends on the size of the box
We also have a (nearly) complete wavefunction (which is pure real)

$$
\Psi=d_{2} \sin \left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2} x
$$

Which can be completed by substituting for E and using the normalisation condition

$$
d_{2}^{2} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=1
$$

integrating and rearranging, using some trig.

$$
d_{2}=\left(\frac{2}{L}\right)^{1 / 2} \text { so finally } \Psi=\left(\frac{2}{L}\right)^{1 / 2} \sin \frac{n \pi x}{L}
$$

Properties of the solutions: Energies

The particle in a box can only occupy certain discrete energy levels, $n=1,2,3 \ldots$

This is a quite different result to that for a classical particle (where any energy is allowed) and for a free particle (which is unquantised).

The energy increases for increasing n
The separations between the energy levels is larger for larger n.

Properties of the solutions: Wavefunctions

For $n=1$ the wavefunction has a maximum at $x=$ L/2
For $n=2$ the wavefunction goes through zero at L/2
Which is referred to a a node.
Again very different to the classical result

Consequently, for $n=1$ the probability of finding the particle at $L / 2$ is large, but for $n=2$ it is zero.

For very large n the probability of finding the particle is the same throughout L, as it is for a classical particle. This is an example of the Bohr correspondence principle - for large quantum numbers QM recovers the classical result.

