
A. K. Nikoloulopoulos CMP2S11 Likelihood-Ratio Test

1 Likelihood Ratio Tests

The Neyman Pearson approach is optimal but in rather limited circumstances. We can de-
vise more widely applicable methods by extending the use of the likelihood ratio to test

1. of a composite hypothesis against an alternative composite hypothesis or

2. of constructing a test of a simple hypothesis against an alternative composite hypoth-
esis when a UMP test does not exist.

Suppose we have a sample x1, x2, · · · , xn from a distribution with density f (x,θ) where θ =
{θ1,θ2, · · · ,θk }. We are interested in some test of a hypothesis

H0 : θ ∈Θ0 against H1 : θ ∈Θ1.

The only restriction being that H0 is a simplified version of H1.

For the Neyman Person we considered

λ= L (H0)

L (H1)

and we can do the same again for composite hypotheses. Of course there may be unspecified
parameters so we choose to consider

λ= maxθ∈Θ0 L

maxθ∈Θ1 L

That is we take the ratio

λ= L (H0)

L (H1)

where assume that we have used the maximum likelihood estimates (under each hypothesis)
for the unspecified parameters.

As we have required that H0 is a special case of H1 it follows that 0 ≤ λ ≤ 1 and we can
envisage a critical region of the form λ≤ constant. As you will see there are problems!

Example 1.1. X1, X2, · · · , Xn is a random sample from a Normal distribution, say N(µ,σ2). We
wish to test

H0 :µ=µ0 against H1 :µ 6=µ0

Both hypotheses are composite since σ2 is unknown. Therefore we will apply the likelihood
ratio test. The likelihood is

L (µ,σ2|x) =
(

1p
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi −µ)2

}
(1)

To find maxθ∈Θ0 L substitute in Eq. (1) µ with µ0 and maximize with respect to σ2, i.e., find
the MLE of σ2 when µ=µ0 is known. So,

logL (x;µ,σ2) =− log(2πσ2)n/2 − 1

2σ2

n∑
i=1

(xi −µ0)2
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or
∂ logL (x;µ0,σ2)

∂σ2
=− n

2σ2
+

∑n
i=1(xi −µ0)2

2σ4
= 0.

Therefore,

σ̂2 = 1

n

∑
(xi −µ0)2 and max

θ∈Θ0

L =
( 1p

2πσ̂2

)n
exp

(
−n

2

)
To find maxθ∈Θ1 L we are looking for the MLEs of µ and σ2. It is known that the later are

µ̂= x̄, σ̂2 = 1

n

∑
(xi − x̄)2 := s′2.

Therefore

max
θ∈Θ1

L =
( 1p

2πs′2

)n
exp

(
−n

2

)
Substituting into the likelihood ratio gives

λ=
( ∑n

i=1(xi − x̄)2∑n
i=1(xi −µ0)2

)n/2

.

We note that (skipping some algebra)∑
(xi −µ0)2 =∑

(xi − x̄)2 +n(x̄ −µ0)2

which eventually gives

λ=
(
1+ t 2

n −1

)−n/2

where

t = x̄ −µ0

s/
p

n
and s2 = 1

n −1

∑
(xi − x̄)2.

is the usual t statistic. The critical region is

C =
{

x :λ≤ k
}

=
{

x :

(
1+ t 2

n −1

)−n/2

≤ k
}

=
{

x :

(
1+ t 2

n −1

)
≥ k−2/n

}
=

{
x : t 2 ≥ k1

}
=

{
x : |t | ≥

√
k1 = k2

}
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For the computation of k2 we have that

α= P (|t | ≥ k2|µ=µ0). (2)

We know that t ∼ tn−1 under the null hypothesis H0 and for the Eq. (2): k2 = tn−1,1−α/2. There-
fore the test with statistic t and critical region {x : |t | ≥ tn−1,1−α/2} is a likelihood ratio test
of

H0 :µ=µ0 against H1 :µ 6=µ0.

2 Asymptotic likelihood ratio test

It should be apparent that finding the distribution of λ is complex and probably impossible
to find in general. Our life is made very much easier by Wilks who proved that

Λ=−2lnλ (3)

has a χ2
r−s distribution, where r is given the number of parameters estimated in H1 and s the

number of parameters estimated in H0. This is a large sample approximation but enables us
to produce tests in a wide variety of situations.

Example 2.1. Suppose we have X1, X2, · · · , Xn a random sample from a Normal distribution,
say N(µx ,σ2

x). We also have a second, independent, random sample Y1,Y2, · · · ,Ym from N(µy ,σ2
y ).

We wish to test
H0 :σx =σy against H1 :σx 6=σy

Both hypotheses are composite since σx ,σy ,µx ,µy is unknown. Therefore we will apply the
likelihood ratio test. The likelihood since the two random samples are independent is,

L (σx ,σy ,µx ,µy |x, y) = Lx(σx ,µx)×Ly (σy ,µy )

=

 1√
2πσ2

x


n

exp

{
− 1

2σ2
x

n∑
i=1

(xi −µx)2

}
×

 1√
2πσ2

y


m

exp

{
− 1

2σ2
y

m∑
i=1

(yi −µy )2

}

The log-likelihood is,

logL (σx ,σy ,µx ,µy |x, y) = −n

2
log2π− n

2
logσ2

x −
1

2σ2
x

n∑
i=1

(xi −µx)2

−m

2
log2π− m

2
logσ2

y −
1

2σ2
y

m∑
i=1

(yi −µy )2

3



A. K. Nikoloulopoulos CMP2S11 Likelihood-Ratio Test

To find maxθ∈Θ0 L substitute in logL (σx ,σy ,µx ,µy |x, y) σx = σy = σ and maximize with
respect to σ2, i.e., find the MLE of σ2, with respect to µx , i.e., find the MLE of µx and with
respect to µy , i.e., find the MLE of µy . With other words the MLEs will derived by solving the
following system of equations,

∂

∂µx
logL (σ,µx ,µy |x, y) = 1

σ2

n∑
i=1

(xi −µx) = 0

∂

∂µy
logL (σ,µx ,µy |x, y) = 1

σ2

m∑
i=1

(yi −µy ) = 0

∂

∂σ2
logL (σ,µx ,µy |x, y) = − n

σ2
+ 1

2σ4

n∑
i=1

(xi −µx)2

− m

σ2
+ 1

2σ4

m∑
i=1

(yi −µy )2 = 0

After some algebra,

µ̂x = x̄, µ̂y = ȳ , σ̂2 = 1

n

∑
(xi − x̄)2 + 1

m

∑
(yi − ȳ)2

To find maxθ∈Θ1 L we are looking for the MLEs of µx ,σ2
x ,µy ,σ2

y . These are

µ̂x = x̄, σ̂x
2 = 1

n

∑
(xi − x̄)2 := s′2x .

µ̂y = ȳ , σ̂y
2 = 1

m

∑
(yi − ȳ)2 := s′2y

Substituting into the likelihood ratio gives, after, some algebra reduces this to

λ=
{

σ̂−(n+m)

σ̂x
−nσ̂y

−m

}
Taking logs

Λ= 2n log(σ̂x)+2m log(σ̂y )−2(n +m) log(σ̂).

There are 4 parameters, all of these had to be estimated for H1 and 3 for H0. It follows that Λ
is X 2

1 .

3 Goodness-of-fit-tests

A common likelihood-ratio based test is the goodness-of-fit test.
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3.1 Categories

Suppose we have an experiment which has k mutually exclusive outcomes which we will
label A1, A2, · · · , Ak . Suppose further we repeat our experiment n times and find that the
number of outcomes in A j is n j , j = 1,2, · · · ,k. In addition we will write the probability of
an outcome being in A j is p j , j = 1,2, · · · ,k. Clearly

∑k
j=1 n j = n and

∑k
j=1 p j = 1.

This simple model has many applications, you could think of asking questions in a sur-
vey with the A j as categories of answers, or the A j could correspond to the bins of a his-
togram. To proceed any further we need a bit more theory.

3.2 The multinomial distribution

If we have the situation above of k mutually and exhaustive categories A j j = 1,2, · · · ,k and
we have

n1 observations in A1 and P[fall in A1] = p1

n2 observations in A2 and P[fall in A2] = p2

· · ·
n j observations in A j and P[fall in A j ] = p j

· · ·
nk observations in Ak and P[fall in Ak ] = pk

Then

P [n1 in A1, · · · ,nk in Ak ] = n!

n1!n2! · · ·nk !
pn1

1 pn2
2 · · ·pnk

k (4)

It is reasonably clear that this is an extension of the Binomial and the distribution is known
as the multinomial distribution.

3.3 Maximum likelihood estimators of multinomial

We can find the maximum likelihood estimators by maximizing the log likelihood

`(p) =
k∑

j=1
n j log(p j )+ const ant

subject to
∑k

j=1 p j = 1. The constant is of course log(n!)−∑k
j=1 log(n j !)

Then consider the function

Φ(p ,λ) =
k∑

j=1
n j log(p j )+λ(

k∑
j=1

p j −1)+ const ant .

The MLEs will derived by solving the following system of equations,

∂Φ

∂p1
= n1

p1
+λ= 0
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∂Φ

∂p2
= n2

p2
+λ= 0

...
∂Φ

∂pk
= nk

pk
+λ= 0

∂Φ

∂pλ
=∑

p j −1 = 0

This is equivalent with
n1

p1
= n2

p2
= . . . = nk

pk
=

∑
n j∑
p j

= n

1
.

Hence it is easy to show that

p̂ j =
n j

n
.

Of course you could say that on either falls in A j or not - a Binomial problem. The max-

imum likelihood estimate of p j is just that for the Binomial probability p̂ j = n j

n .

3.4 Likelihood ratio for the multinomial

Suppose we now wish to test

H0 : P (A j ) = p j , j = 1,2, · · · ,k against H1 : probabilities are unspecified

The likelihood ratio is in general

λ=
k∏

j=1
p̂

n j

j /
k∏

j=1
p̆

n j

j =
k∏

j=1

(
p̂ j /p̆ j

)n j

where the p̂ j are the estimates under H0 and p̆ j are the estimates under H1. Since we have
unspecified probabilities, we need the estimates of these probabilities - however we know
that

p̆ j = n j /n j = 1,2, · · · ,n

so

λ=
k∏

j=1
p̂

n j

j /
k∏

j=1

(n j

n

)n j =
k∏

j=1

(
np̂ j /n j

)n j

or

Λ=−2logλ= 2
k∑

j=1
n j log

(
n j

np̂ j

)
.

Our statistic is often written as the asymptotically equivalent form

X 2 =
k∑

j=1

(n j − ê j )2

ê j
, where ê j = np̂ j . (5)
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Note here that if the probabilities p j under the null hypothesis are known and not need to
be estimated then the chi-square statistic reduces to the form,

X 2 =
k∑

j=1

(n j −e j )2

e j
, where e j = np j . (6)

Example 3.1. An experimenter bred flowers and found the following numbers in each of the
four possible classes

Class A1 A2 A3 A4

Number 120 48 36 13
Probability 9/16 3/16 3/16 1/16

The table also includes the probability of falling in each class - according to established theory.
We aim to test

H0 : probabilities are as given by the table H1 : probabilities are unspecified.

In the following table we have calculated the expected frequencies:

class p j n j ei = np j

1 9/16 120 122.06
2 3/16 48 40.69
3 3/16 36 40.69
4 1/16 13 13.56

The likelihood ratio, since the probabilities under the null hypothesis are given, is

λ=
k∏

j=1

(
np j /n j

)n j

and we find, after some arithmetic, using Eq. (6) that Λ is approximately 1.9. We know that
Λ = −2log(λ) is chi-squared. Here we have unspecified k-1 parameters under H1 and none
under H0 so the number of degrees of freedom is 3. We will reject H0 ifΛ is large i.e. exceed the
95% point of X 2

3 which is 7.815 . In this case we accept H0.

3.5 Goodness of fit–Non multinomial distribution

We can use the ideas above for goodness-of-fit testing for various theoretical distributions.
We need to split the x axis in k intervals (classes) A1, A2, . . . , Ak and calculate P (A1),P (A2), . . . ,P (Ak )
using the theoretical distribution.

Example 3.2. Suppose we have 200 random numbers which are suppose to be from a U (0,1)
distribution. The numbers in the intervals (0-0.1), (0.1-0.2), e.t.c., are

7



A. K. Nikoloulopoulos CMP2S11 Likelihood-Ratio Test

class 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6
frequency 19 18 20 16 26 18

class 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1
frequency 19 19 23 22

This is just a test of

H0 : p j = 0.1 for all j against An unspecific alternative.

We find that , using Λ=∑k
j=1

(n j−e j )2

e j
= 3.69, where e j = np j (the probabilities under the null

hypotheses are given and not need to be estimated); see also Eq. 6. We know that Λ is X 2
r−s =

X 2
9−0 and we accept H0 at 5% sinceΛ does not lie in the critical regionΛ≥χ2

9,0.95 = 16.919 and
conclude that the distribution is indeed Uniform.

Example 3.3. A survey of families with 5 children gave rise the following distribution.

No Boys 0 1 2 3 4 5 total
no families 8 40 88 110 56 18 320

One model for the number of boys is the binomial, specifically that the number of boys X has
the distribution

P [X = x] =
(

5

x

)
px(1−p)5−x x = 0,1,2,3,4,5,

where p = P [ boy ].

We can see if this distribution fits the data when p = 1
2 . Calculating the expected probabilities,

P [0 births in 5] =
(

5

0

)(
1

2

)5

= 1/32

P [1 birth in 5] =
(

5

1

)(
1

2

)5

= 5/32

· · · ,

we conclude to the following table,

No Boys 0 1 2 3 4 5 total
no families (n j ) 8 40 88 110 56 18 320

expected (e j = np j ) 10 50 100 100 50 10

The likelihood ratio statistic in Eq. (6 ) is Λ = 11.096 and the degrees of freedom is 6-1=0.
We only need to estimate 5 of the probabilities since the remaining one follows from the fact
that they must add up to one. The upper point of χ2

5 = 11.07 so in this case we reject H0 and
conclude our model is wrong.

We know however that in general p[ boy ] > 1
2 . Indeed from our data the proportion of

boys is p̂ = 0.5375. We can revisit out Binomial model but in this case we use p̂ = 0.5375. The
expectations are harder - I get
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No Boys 0 1 2 3 4 5 total
no families (n j ) 8 40 88 110 56 18 320

expected (ê j = np̂ j ) 6.8 39.3 91.5 106.3 61.8 14.4 320

and Λ = 1.03 . We now have (6-1)-1 =4 degrees of freedom. We estimate 5 parameters for H1

and one under H0. The conclusion is that this fits the data very well.

Example 3.4. According to the data of the following table can we assume that the parent dis-
tribution is standard normal?

classes frequencies
≤ 39.5 6

39.5–44.5 13
44.5–49.5 40
49.5–54.5 65
54.5–59.5 52
≥ 59.5 24

For testing the null hypothesis that the data follow normal distribution against the alternative
that follow any other distribution we need to:

1. Derive the maximum likelihood estimators of µ,σ2, i.e.,

µ= x̄ = 1

n

∑
ni xi , σ̄2 = s′2 = 1

n

(∑
ni x2

i −
(
∑

ni xi )2

n

)
,

where xi is the center of each interval and ni the observed frequency. The centers of the
classes are 37, 42, 47, 52, 57, 62 (for eg., consider the class 44.5–49.5 we have [44.5+49.5]/2=47).
After some calculations,

µ̄= 52.4 and σ̄2 = 36.77 = 6.062.

2. Calculate the estimated probabilities p j from N (µ,σ2) = N (52.4,36.77). For e.g.,

P (x ≤ 39.5) = P

(
x −52.4

6.06
≤ 39.5−52.4

6.06

)
= P (z ≤−2.13) = 0.5−P (0 < z < 2.13) = 0.0166.

3. Calculate the expected (estimated) frequencies ê j = np̂ j . For e.g., ê1 = 200×0.0166.

So we derive the following table,
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classes n j p̂ j ê j = np̂ j

≤ 39.5 6 0.0166 3.32
39.5–44.5 13 0.0802 16.04
44.5–49.5 40 0.2188 43.76
49.5–54.5 65 0.3212 64.24
54.5–59.5 52 0.2422 48.44
≥ 59.5 24 0.1210 24.20
total 200 1 200

One useful rule of thumb is to try and ensure that non of the expected values are less than
5%. This is a rather mysterious number but if we examine our chi-squared approximation
carefully we see it breaks down when we have small expected values. Therefore we merge the
classes ≤ 39 and 39.5–44.5, i.e., we have finally 5 classes.

According to the table we find that, using Eq. (5)Λ=∑5
j=1

(n j−ê j )2

ê j
= 0.6021. We know that

Λ is X 2
r−s = X 2

4−2 and we accept H0 at 1% sinceΛ does not lie in the critical regionΛ≥χ2
2,0.99 =

9.210 and conclude that the distribution is indeed normal.

10


