
Lecture 5

Actually, some differential equations (Bessel’s equation, for instance) have solutions of a more general
form, namely, power series times a single power of x

y(x) = xα

∞∑
n=0

anx
n. (1.2)

We will show how the Power Series Method can be generalized to such equations. The generalized
Power Series Method is known as

Frobenius Method.

[Reading: EK, Chapter 4]

Power Series

DEFINITION 12 A power series (in powers of x− x0) is an infinite series of the form

y(x) =
∞∑

n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + ........, (1.3)

where an are coefficients of the series, x0 is called the centre of the series and x is a variable.

In the following we take x0 = 0. This does not mean that we consider only a particular case because
we always can treat x− x0 as a new variable, say, ξ. In addition, we shall assume that all variables
and constants are real.

EXAMPLE:

1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + ...... (|x| < 1) (1.4)

[Check by multiplying both sides by 1− x.]

EXAMPLE:

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ ...... (1.5)
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This formula follows from the Taylor series expansion for a given function f(x) at the point x = 0

f(x) =
∞∑

n=0

f (n)(0)

n!
xn (1.6)

Here f (n)(0) denotes the n-th derivative of the function f(x) at x = 0 and n! = 1× 2× 3......× n.

[Note that dn

dxn [ex] = ex and, therefore, f (n)(0) = 1.]

Convergence of power series (1.3) is understood in the usual sense:

lim
N→∞

N∑
n=0

anxn exists.

The series (1.3) defines a function y(x) on interval I = (x0 − R, x0 + R) (I = (−R, R) for x0 = 0),
where R is the radius of convergence given by the formula:

1

R
= lim

n→∞
|an| 1n (1.7)

or

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ (1.8)

For the power series (1.4), an = 1 and formula (1.8) gives R = 1.

For the power series (1.5), an = 1/n! and formula (1.8) gives R = ∞.

IMPORTANT Most of the elementary functions can be presented as power series. A function
defined by a power series is continuous and differentiable in I. The derivative can be computed by
differentiating the series term by term. The resulting power series for the derivative has the same
radius of convergence R. Therefore, any derivative of the function can be computed. The power
series can be integrated term-by-term within the interval of its convergence.

THEOREM 6 [Identity Principle] If

∞∑
n=0

anxn = 0 (1.9)

for any x ∈ I, then an = 0 for n ≥ 0.

PROOF Take x = 0 in (1.9) and deduce that a0 = 0. Now the summation in (1.9) starts from
n = 1. Divide both sides of (1.9) by x, take x = 0 and deduce that a1 = 0. Continue the procedure
and obtain that an = 0 for n ≥ 0.
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POWER SERIES METHOD

THEOREM 7 [Fuch’s (1833-1902)] Consider the differential equation

y′′ + p(x)y′ + q(x)y = 0

with initial conditions

y(0) = K0, y′(0) = K1.

If both p(x) and q(x) have Taylor series, which converge on the interval I = (−R, R), R > 0, then
the IVP has unique power series solution y(x), which also converges on the interval I.

Radius of convergence of the series solution is at least as big as the minimum of the radii of conver-
gence of p(x) and q(x).

EXAMPLE: Let us consider how to obtain a power series solution for the homogeneous Legendre
equation

(1− x2)y′′ − 2xy′ + m(m + 1)y = 0 (1.10)

or, in standard form,

y′′ − 2x

1− x2
y′ +

m(m + 1)

1− x2
y = 0, (1.11)

where m is integer.

In Fuch’s theorem,

p(x) = − 2x

1− x2
= −2

∞∑
n=0

x2n+1, q(x) = m(m + 1)
∞∑

n=0

x2n

with radius of convergence R = 1, see (1.4). Therefore, equation (1.11) (and correspondingly, equa-
tion (1.10)) has two linearly independent solutions in the form of power series, see Theorem 5.

The power series solution has the form

y(x) =
∞∑

n=0

anx
n. (1.12)

Substitute (1.12) into (1.10)

(1− x2)
∞∑

n=2

n(n− 1)anx
n−2 − 2x

∞∑
n=1

nanxn−1 + m(m + 1)
∞∑

n=0

anxn = 0.

By algebra

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

[−n(n− 1)− 2n + m(m + 1)]anx
n = 0. (1.13)
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In the first term, we introduce n− 2 = k which gives

∞∑
n=2

n(n− 1)anxn−2 =
∞∑

k=0

(k + 2)(k + 1)ak+2x
k =

∞∑
n=0

(n + 2)(n + 1)an+2x
n. (1.14)

Equations (1.13) and (1.14) provide

∞∑
n=0

{(n + 2)(n + 1)an+2 − [n(n− 1) + 2n−m(m + 1)]an}xn = 0 (−1 < x < 1).

Identity Principle gives

(n + 2)(n + 1)an+2 − [n(n− 1) + 2n−m(m + 1)]an = 0 (n ≥ 0)

and

an+2 =
n2 + n−m2 −m

(n + 1)(n + 2)
an =

(n−m)(n + m + 1)

(n + 1)(n + 2)
an (n ≥ 0). (1.15)

If a0 = 0 and a1 6= 0, then the even coefficients a2k are zero, according to (1.15,) and the solution is

y1(x) = a1x + a3x
3 + .............. (1.16)

where

a3 =
(1−m)(2 + m)

1 · 2 · 3 a1, a5 =
(3−m)(4 + m)

4 · 5 a3 =
(1−m)(3−m)(2 + m)(4 + m)

1 · 2 · 3 · 4 · 5 a1, .........

Lecture 6

If a1 = 0 and a0 6= 0, then the odd coefficients a2k+1 are zero, according to (1.15,) and the solution is

y2(x) = a0 + a2x
2 + .............. (1.17)

where

a2 =
−m(1 + m)

1 · 2 a0, a4 =
(2−m)(3 + m)

3 · 4 a2 =
(0−m)(2−m)(1 + m)(3 + m)

1 · 2 · 3 · 4 a0, .........

If m = 0, then a2 = 0, a4 = 0 and so on. Therefore, the power series for y1(x) consists of infinite
number of terms but y2(x) = a0.

If m = 1, then a3 = 0, a5 = 0 and so on. Therefore, a2k+1 = 0 for k ≥ 1. In this case, the power
series for y2(x) consists of infinite number of terms but y1(x) = a1x.
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If m = 2, then a2 = −3a0, a4 = 0 and so on. Therefore, y1(x) is given by infinite series but

y2(x) = a0 + a2x
2 = a0 − 3a0x

2 = a0(1− 3x2).

Solutions y1(x) and y2(x) are linearly independent (Why?) and a general solution of (1.10) is

y(x) = c1y1(x) + c2y2(x),

where y1(x) and y2(x) are given by power series (1.16) and (1.17), correspondingly. These power
series converge on the interval (−1, 1).

However, they do not converge at x = ±1 !!!!!!!!

At the end of Lecture 3 it was shown that equation (1.10) with m = 1 has two solutions

y1(x) = x, y2(x) = −1 +
x

2
log

(1 + x

1− x

)
.

It is seen that y2(x) is singular at x = ±1 but y1(x) is regular.

IMPORTANT A regular solution of Legendre equation (1.10) exists if and only if the number of
terms in (1.16) or (1.17) is finite.

If m is even, then the solution (1.16) is singular at x = ±1 but the solution (1.17) is regular.

If m is odd, then the solution (1.17) is singular at x = ±1 but the solution (1.16) is regular.

IMPORTANT If m is not integer, then there is no regular solution of (1.10).

LEGENDRE POLYNOMIALS

DEFINITION 13 For integer m a regular solution of (1.10) which is equal to unity at x = 1 is
known as the Legendre polynomial, Pm(x), of degree m.

EXAMPLE:

m = 0: y2(x) = a0, a2n = 0 (n ≥ 1); y2(1) = 1 =⇒ a0 = 1 =⇒ P0(x) = 1

m = 1: y1(x) = a1x, a2n+1 = 0 (n ≥ 1); y1(1) = 1 =⇒ a1 = 1 =⇒ P1(x) = x

m = 2: y2(x) = a0 − 3a0x
2, a2n = 0 (n ≥ 2);

y2(1) = a0(1− 3 · 1) = 1 =⇒ a0 = −1
2

=⇒ P2(x) =
1

2
(3x2 − 1)

m = 3: y3(x) = a1x− 5
3
a1x

3, y3(1) = a1(1− 5
3
· 1) = −2

3
a1 = 1 =⇒

a1 = −3
2

=⇒ P3(x) =
1

2
(5x3 − 3x)
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Figure 1. Legendre polynomials P0(x), P1(x), P2(x), P3(x), P4(x).

It is not easy to calculate the Legendre polynomials of higher degrees in this way.

It is more convenient to use Rodrigues’ formula

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (1.18)

We do not prove formula (1.18) in this module but we demonstrate how it works

m = 0 : P0(x) =
1

200!

d0

dx0
[(x2 − 1)0] = 1.

m = 1 : P1(x) =
1

211!

d1

dx1
[(x2 − 1)1] =

1

2

d

dx
[x2 − 1] = x

m = 2 : P2(x) =
1

222!

d2

dx2
[(x2 − 1)2] =

1

4 · 1 · 2
d

dx
[2(x2 − 1) · 2x] =

1

2
(3x2 − 1)

Calculate P4(x) using Rodrigues’ formula (1.18).

Comment Sometimes the Legendre polynomials are defined by (1.18).

The Legendre polynomials can also be calculated step by step using the following recurrence relation
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(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0 (n = 1, 2, 3, ....) (1.19)

EXAMPLE:

You are given P0(x) = 1 and P1(x) = x. Derive formulae for the Legendre polynomials using (1.19).

n = 1 : 2 · P2(x)− 3xP1(x) + 1 · P0(x) = 0 =⇒ 2P2(x)− 3x2 + 1 = 0, P2(x) =
1

2
(3x2 − 1)

n = 2 : 3·P3(x)−5xP2(x)+2·P1(x) = 0 =⇒ 3·P3(x)−5

2
x(3x2−1)+2x = 0, P3(x) =

1

2
(5x3−3x)

EXAMPLE:

Calculate P4(0).

Take n = 3 in (1.19).

4P4(0)− 0 + 3P2(0) = 0, =⇒ P4(0) = −3

4
P2(0) = −3

4
· 1

2
(3 · 02 − 1) =

3

8
.

Derivatives of the Legendre polynomials can be calculated using the following recurrence relation

P ′
n+1(x) = P ′

n−1(x) + (2n + 1)Pn(x). (1.20)

EXAMPLE:

Calculate P ′
3(x) by differentiating the formula for P3(x) and by (1.20).

DEFINITION 14 A system of functions ϕn(x), (n = 0, 1, 2, ...), is said to be orthogonal on the
interval (a, b) [or the functions ϕn(x) are said to be orthogonal] if

∫ b

a

ϕn(x)ϕm(x)dx = 0 (n 6= m).

DEFINITION 15 A system of functions ϕn(x), (n = 0, 1, 2, ...), is said to be orthonormal on the
interval (a, b) if the system is orthogonal and

∫ b

a

ϕ2
n(x)dx = 1.
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THEOREM 8 The Legendre polynomials Pn(x), n ≥ 0, are orthogonal on the interval (−1, 1).

PROOF Subtract the differential equation (1.10) for Pn(x) multiplied by Pm(x) from (1.10) for
Pm(x) multiplied by Pn(x):

[Hint: [(1− x2)P ′
n]′ = (1− x2)P ′′

n − 2xP ′
n and compare with (1.10)]

[(1− x2)P ′
m]′Pn − [(1− x2)P ′

n]′Pm + m(m + 1)PmPn − n(n + 1)PnPm = 0

or

[(1− x2){P ′
mPn − P ′

nPm}]′ + (m− n)(m + n + 1)PmPn = 0

Integrate the latter equation over the interval (−1, 1) and note that the integral of the first term
vanishes. Therefore,

(m− n)(m + n + 1)

∫ 1

−1

Pm(x)Pn(x)dx = 0

and

∫ 1

−1

Pm(x)Pn(x)dx = 0 (n 6= m). (1.21)

Lecture 7

THEOREM 9 A system of functions
√

n + 1
2
Pn(x), (n = 0, 1, 2, ...), is orthonormal

on the interval (−1, 1).

PROOF The system of functions
√

n + 1
2
Pn(x), (n = 0, 1, 2, ...), is orthogonal on the interval (−1, 1)

according to (1.21). We need to show that

∫ 1

−1

P 2
n(x)dx =

2

2n + 1
(n = 0, 1, 2, .....) (1.22)

Replace n by n− 1 in (1.19) and multiply the result by (2n + 1)Pn(x) [n ≥ 2]

n(2n + 1)P 2
n(x)− (2n− 1)(2n + 1)xPn−1(x)Pn(x) + (n− 1)(2n + 1)Pn−2(x)Pn(x) = 0. (a)

Multiply (1.19) by (2n− 1)Pn−1(x)

(n + 1)(2n− 1)Pn+1(x)Pn−1(x)− (2n + 1)(2n− 1)xPn(x)Pn−1(x) + n(2n− 1)P 2
n−1(x) = 0

and subtract from (a):

n(2n+1)P 2
n(x)+(n−1)(2n+1)Pn−2(x)Pn(x)−(n+1)(2n−1)Pn+1(x)Pn−1(x)−n(2n−1)P 2

n−1(x) = 0.
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Integrate this relation over the interval (−1, 1) and use (1.21)

∫ 1

−1

P 2
n(x)dx =

2n− 1

2n + 1

∫ 1

−1

P 2
n−1(x)dx (n ≥ 2).

Repeated application of this formula gives

∫ 1

−1

P 2
n(x)dx =

2n− 1

2n + 1

2n− 3

2n− 1

∫ 1

−1

P 2
n−2(x)dx =

2n− 3

2n + 1

∫ 1

−1

P 2
n−2(x)dx

=
2n− 3

2n + 1

2n− 5

2n− 3

∫ 1

−1

P 2
n−3(x)dx =

2n− 5

2n + 1

∫ 1

−1

P 2
n−3(x)dx = ... =

2n− (2j − 1)

2n + 1

∫ 1

−1

P 2
n−j(x)dx.

For j = n− 1 we have

∫ 1

−1

P 2
n(x)dx =

3

2n + 1

∫ 1

−1

P 2
1 (x)dx =

3

2n + 1

∫ 1

−1

x2dx =
2

2n + 1
.

Expansion of functions in series of Legendre polynomials

Consider a function f(x) defined in the interval (−1, 1).

Is it possible to present this function as a series of Legendre polynomials

f(x) =
∞∑

n=0

cnPn(x) (1.23)

and, if yes, how to find the coefficients cn in (1.23)?
Coefficients cn are obtained by multiplying (1.23) by Pm(x) and integration the result term by term
over the interval (−1, 1). Using (1.21) and (1.22), we find

∫ 1

−1

f(x)Pm(x)dx =
2

2n + 1
cm

and, therefore,

cn = (n +
1

2
)

∫ 1

−1

f(x)Pn(x)dx (n = 0, 1, 2, ....). (1.24)

THEOREM 10 If a function f(x) is piecewise smooth in (−1, 1) and if the integral

∫ 1

−1

f 2(x)dx

is finite, then the series (1.23), with coefficients cn given by (1.24), converges to f(x) at every
continuity point of f(x) and to

1

2
[f(x− 0) + f(x + 0)],

if x is a discontinuity point of f(x).
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EXAMPLE:

Consider f(x) = 0, where −1 ≤ x < α, and f(x) = 1, where α < x ≤ 1. According to Theorem 10,
this function can be expanded as a series of the form (1.23) with coefficients

cn = (n +
1

2
)

∫ 1

α

Pn(x)dx

Integrate (1.20)
P ′

n+1(x) = P ′
n−1(x) + (2n + 1)Pn(x) (n ≥ 1)

from α to 1 and note that Pn(1) = 1:

1− Pn+1(α) = 1− Pn−1(α) + (2n + 1)

∫ 1

α

Pn(x)dx.

We find

cn = −1

2
[Pn+1(α)− Pn−1(α)] (n ≥ 1), c0 =

1

2
(1− α).

The series has the form

f(x) =
1

2
(1− α)− 1

2

∞∑
n=1

[Pn+1(α)− Pn−1(α)]Pn(x), (−1 < x < 1). (1.25)

EXAMPLE:

Consider f(x) =
√

(1− x)/2, where −1 ≤ x ≤ 1. According to Theorem 10, this function can be
expanded as a series of the form (details are not given)

√
1− x

2
=

2

3
P0(x)− 2

∞∑
n=1

Pn(x)

(2n− 1)(2n + 3)
, (−1 < x < 1). (1.26)
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Figure 2. Series of Legendre polynomials (1.25) for α = 0.25 with 10, 100 and 1000 terms.
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Lecture 8

Power Series Method can be used to find solutions of many important differential equations in stan-
dard form with coefficients which can be presented by power series.

Consider Airy’s equation

y′′ − xy = 0, (1.27)

which is important in theory of surface waves.

Substitute the power series (1.12) into (1.27)

∞∑
n=2

ann(n− 1)xn−2 −
∞∑

n=0

anx
n+1 = 0.

Replace n− 2 by m in the first series and n + 1 by m in the second one

2a2 +
∞∑

m=1

{am+2(m + 2)(m + 1)− am−1}xm = 0

Identity Principle gives a2 = 0 and

am+3 =
am

(m + 3)(m + 2)
.

Consider two cases:

(a) a0 6= 0, a1 = 0 with the solution

y1(x) = a0[1 +
x3

2 · 3 +
x6

2 · 3 · 5 · 6 + .....];

(a) a1 6= 0, a0 = 0 with the solution

y2(x) = a1[x +
x4

3 · 4 +
x7

3 · 4 · 6 · 7 + .....]

These two solutions are linearly independent (Why?) and a general solution of Airy’s equation is
given as

y(x) = a0y1(x) + a1y2(x).

13



FROBENIUS METHOD

Consider more general form of H-LODE2 than that in the Power series method

y′′ +
P (x)

x
y′ +

Q(x)

x2
y = 0, (1.28)

where both P (x) and Q(x) can be represented by their power series

P (x) =
∞∑

n=0

pnx
n, Q(x) =

∞∑
n=0

qnxn (|x| < R). (1.29)

If p0 = 0, q0 = 0 and q1 = 0, we arrive at the conditions of the Theorem 7 with non-singular coeffi-
cients of the differential equation .

DEFINITION 16 The singular point x = 0 of the differential equation (1.28) is called
regular singular point if the functions P (x) and Q(x) can be represented by their power series (1.29).
Otherwise x = 0 is called irregular singular point.

The idea of the Frobenius Method is based upon the following form of a solution of the second-order
differential equation (1.28) with regular singular point at x = 0:

y(x) =
∞∑

n=0

anx
n+α, (1.30)

where coefficients an and constant α are unknown and should be obtained in such a way that function
(1.30) satisfies differential equation (1.28).

We represent (1.28) in the form

x2y′′ + xP (x)y′ + Q(x)y = 0, (1.31)

and substitute (1.30) and (1.29) into (1.31):

∞∑
n=0

an(n + α)(n + α− 1)xn+α +
{ ∞∑

n=0

pnxn
}{ ∞∑

n=0

an(n + α)xn+α
}

+
{ ∞∑

n=0

qnxn
}{ ∞∑

n=0

anx
n+α

}
= 0

It is seen that the left-hand side in the latter equation contains powers xα, xα+1, xα+2 and so on. We
have

a0[α(α− 1) + p0α + q0]x
α + {a1[α(α + 1) + p0(α + 1) + q0] + a0[αp1 + q1]}xα+1 + ... = 0 (1.32)

Divide both sides of the equation by xα. The resulting polynomial on the left-hand side is identically
zero if all its coefficients are zero (see Identity Principle). Therefore,
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a0[α(α− 1) + p0α + q0] = 0, (1.33)

a1[α(α + 1) + p0(α + 1) + q0] + a0[αp1 + q1] = 0, ... (1.34)

If a0 = 0 in (1.33), then a1 = 0 as it follows from (1.34). Analysis of the higher order terms in (1.32)
reveals that an = 0, n ≥ 1 in this case and we arrive at the trivial solution y(x) = 0, which is of no
interest. Therefore, a0 6= 0 and (1.33) provides the equation with respect to α

α(α− 1) + p0α + q0 = 0 (1.35)

Equation (1.35) is known as indicial equation.

THEOREM 11 If x = 0 is a regular singular point of the differential equation (1.28) and α1, α2

are real solutions of the quadratic equation (1.35) such that α1 ≥ α2, then

(a) there exists a solution y1(x) of the form (1.30) with α = α1;

(b) if α1−α2 is not an integer, then there exists a second solution y2(x) of the form (1.30) with α = α2;

(c) if α1 − α2 is integer, then there exists a second solution of the form

y2(x) = Cy1(x) log x +
∞∑

n=0

bnxn+α2 .

Solutions y1(x) and y2(x) are linearly independent.

(d) if α1 = α2, then equation (1.28) has two linearly independent solutions

y1(x) =
∞∑

n=0

anxn+α1 ,

y2(x) = y1(x) log x +
∞∑

n=0

bnx
n+α1+1.

Bessel’s differential equation

Solutions of the second-order linear differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0, (1.36)

are known as cylinder functions or Bessel functions. Here ν is a positive parameter and −∞ < x <
∞. Equation (1.36) is known as Bessel’s equation of order ν. In many applications, one considers a
special case where the parameter ν is positive integer or zero. This case is much simpler than the
case of arbitrary ν. It will serve here to introduce the general theory of Bessel functions. In the
following, ν = m, where m = 0, 1, 2, ...

Divide (1.36) by x2 and present the Bessel’s equation in standard form (1.28)
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y′′ +
1

x
y′ +

x2 −m2

x2
y = 0, (1.37)

Comparing (1.37) and (1.28), we conclude that P (x) = 1 and Q(x) = x2 −m2.
Equations (1.29) gives

p0 = 1, pn = 0 (n ≥ 1),

q0 = −m2, q1 = 0, q2 = 1, qn = 0 (n ≥ 3).

The indicial equation (1.35) has the form

α(α− 1) + 1 · α−m2 = 0.

Both solutions α1 = m and α2 = −m of this equation are real. Note that α1 − α2 = 2m is integer
and equals to zero if m = 0.

Theorem 11 (c, d) gives that two linearly independent solutions of the Bessel’s equation (1.36) can
be represented in the forms

y1(x) =
∞∑

n=0

anx
n+m, y2(x) = Cy1(x) log x +

∞∑
n=0

bnxn−m if m ≥ 1 (1.38)

y1(x) =
∞∑

n=0

anx
n, y2(x) = y1(x) log x +

∞∑
n=0

bnx
n+1 if m = 0. (1.39)

Lecture 9

Consider ν = m, m ≥ 0, and a solution of the Bessel’s equation

y1(x) =
∞∑

n=0

anxn+m. (1.40)

Substitute (1.40) into (1.36). By algebra

∞∑
n=0

an(n + m)(n + m− 1)xn+m +
∞∑

n=0

an(n + m)xn+m + (x2 −m2)
∞∑

n=0

anx
n+m = 0,

∞∑
n=0

[(n + m)(n + m− 1) + (n + m)−m2]anxn+m +
∞∑

n=0

anx
n+m+2 = 0,

∞∑
n=0

n(n + 2m)anx
n+m +

∞∑
n=0

anxn+m+2 = 0,

16



a0 · 0 · (0 + 2m)xm + a1 · 1 · (1 + 2m)xm+1 +
∞∑

n=2

n(n + 2m)anx
n+m +

∞∑
n=2

an−2x
n+m = 0.

Identity principle gives

a1 = 0, n(n + 2m)an + an−2 = 0 (n ≥ 2).

Replace n− 2 by k, then

ak+2 = − ak

(k + 2)(k + 2 + 2m)
(k ≥ 0). (1.41)

Recurrence relation (1.41) and equality a1 = 0 provide that a3 = 0, a5 = 0 and a2n+1 = 0. If a0 = 0,
then the solution is zero.

If a0 6= 0, then (1.41) gives

a2 = − a0

(0 + 2)(0 + 2 + 2m)
= − a0

22 · 1 · (m + 1)
,

a4 =
a0

24 · 1 · 2 · (m + 1)(m + 2)
,

a6 = − a0

26 · 1 · 2 · 3 · (m + 1)(m + 2)(m + 3)
, .....

Substitute the obtained coefficients into (1.41):

y1(x) = a0x
m − a0

22 · 1 · (m + 1)
x2+m +

a0

24 · 1 · 2 · (m + 1)(m + 2)
x4+m

− a0

26 · 1 · 2 · 3 · (m + 1)(m + 2)(m + 3)
x6+m = ...

and

= a0x
m

{
1− 1

1 · (m + 1)

(x

2

)2

+
1

1 · 2 · (m + 1)(m + 2)

(x

2

)4

− 1

1 · 2 · 3 · (m + 1)(m + 2)(m + 3)

(x

2

)6

+...
}

The solution y1(x) with

a0 =
1

2mm!

is known as the Bessel function of the first kind of order m Jm(x)

Jm(x) =
(x

2

)m{ 1

m!
− 1

1 · (m + 1)!

(x

2

)2

+
1

1 · 2 · (m + 2)!

(x

2

)4

− 1

1 · 2 · 3 · (m + 3)!

(x

2

)6

+ ...
}
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=
(x

2

)m
∞∑

k=0

(−1)k

k!(k + m)!

(x

2

)2k

=
∞∑

k=0

(−1)k

k!(k + m)!

(x

2

)2k+m

. (1.42)

In particular,

J0(x) = 1− 1

(1!)2

(x

2

)2

+
1

(2!)2

(x

2

)4

− 1

(3!)2

(x

2

)6

+ ...,

J1(x) =
x

2

{
1− 1

1!2!

(x

2

)2

+
1

2!3!

(x

2

)4

− 1

3!4!

(x

2

)6

+ ...
}

.

The radius of convergence R of the power series (1.42) is calculated using (1.8) with

Ak =
(−1)k

k!(k + m)!

1

R
= lim

k→∞

∣∣∣Ak+1

Ak

∣∣∣ = lim
k→∞

∣∣∣ (−1)k+1

(k + 1)!(k + 1 + m)!

k!(k + m)!

(−1)k

∣∣∣ = lim
k→∞

1

(k + 1)(k + 1 + m)
= 0.

Therefore, R = ∞ and the series (1.42) converges for any x from −∞ to ∞.

Bessel functions are shown in Figure 4. Bessel function Jn(x) has an infinite number of zeros xnk,
Jn(xnk) = 0, k ≥ 1. All the zeros of Jn(x) are simple, except the point x = 0, which is a zero of order n
if n > 0.

Second solution of the Bessel’s equation (1.36) is calculated in the form (1.38) [or (1.39) if n = 0].
These solutions are singular at x = 0. Bessel functions of the first kind are regular solutions of the
Bessel’s equation (1.36).

THEOREM 12 The Bessel functions of higher order can be expressed in terms of the two functions
J0(x) and J1(x).

PROOF Multiply (1.42) by xn and differentiate the result

d

dx
[xnJn(x)] =

d

dx

[
xn

∞∑

k=0

(−1)k

k!(k + n)!

(x

2

)2k+n]
=

d

dx

[ ∞∑

k=0

(−1)k 2n

k!(k + n)!

(x

2

)2k+2n]

=
∞∑

k=0

(−1)k(2k + 2n) 2n

k!(k + n)!

(x

2

)2k+2n−1

· 1

2
=

∞∑

k=0

(−1)k(k + n) 2n

k!(k + n)!

(x

2

)n(x

2

)2k+n−1

= xn

∞∑

k=0

(−1)k

k!(k + n− 1)!

(x

2

)2k+n−1

= xnJn−1(x).

d

dx
[xnJn(x)] = xnJn−1(x) (n ≥ 1) (1.43)
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Figure 4. Bessel functions Jn(x), n = 0, 1, 2, 3, 4, for 0 < x < 5 and 0 < x < 20.
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Multiply (1.42) by x−n and differentiate the result to obtain

d

dx
[x−nJn(x)] = −x−nJn+1(x) (n ≥ 0) (1.44)

Perform differentiation in (1.43) and (1.44), multiply the results by x−n and xn, respectively:

n

x
Jn(x) + J ′n(x) = Jn−1(x), −n

x
Jn(x) + J ′n(x) = −Jn+1(x).

Combine these two equations and obtain the following recurrence relations satisfied by the Bessel
functions:

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) (n ≥ 1), (1.45)

J ′n(x) = −1

2
[Jn+1(x)− Jn−1(x)] (n ≥ 1). (1.46)

In addition,

J ′0(x) = −J1(x),

which follows from (1.44) with n = 0.

Relation (1.45) makes it possible to express Bessel functions of higher order in terms of the two
functions J0(x) and J1(x). For example,

n = 1 : J2(x) = (2/x)J1(x)− J0(x)

n = 2 : J3(x) = (4/x)J2(x)− J1(x) = (8/x2 − 1)J1(x)− (4/x)J0(x).

Lecture 10

REMARK

Recurrence relations (1.45) and (1.46) are valid for Bessel functions of arbitrary real order ν (not
necessary integer!).

THEOREM 13 The Bessel functions of order n + 1
2
, n = 0,±1,±2, ... can be expressed in terms of

elementary functions.

PROOF

Consider the Bessel’s equation (1.36) for ν = ±1
2
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x2y′′ + xy′ + (x2 − 1

4
)y = 0. (1.47)

The solution of this equation is sought in the form

y(x) = x−
1
2 v(x), (1.48)

where v(x) is a new unknown function. Substitute (1.48) into (1.47) and check that the equation
becomes

x
3
2 [v′′ + v] = 0.

Functions v1(x) = sin x and v2(x) = cos x are linearly independent solutions of the latter equation.

Correspondingly, x−
1
2 sin x and x−

1
2 cos x are linearly independent solutions of the Bessel equation

(1.47). In standard notations

J 1
2
(x) =

( 2

πx

) 1
2
sin x, J− 1

2
(x) =

( 2

πx

) 1
2
cos x. (1.49)

Take n = 1
2

and n = −1
2

in (1.45), use (1.49) to derive

J 3
2
(x) =

( 2

πx

) 1
2
[sin x

x
− cos x

]
, J− 3

2
(x) = −

( 2

πx

) 1
2
[cos x

x
+ sin x

]
.

Recurrence relation (1.45) makes it possible to express Bessel functions of order n+1
2
, n = 0,±1,±2, ...

in terms of trigonometric and power functions. Note that the Bessel functions Jn+ 1
2
(x) are defined

only for x ≥ 0 and are singular at x = 0 if n < 0.

Zeros xn+ 1
2
,k of the Bessel functions of order n+ 1

2
are easier to compute than those of Bessel functions

of arbitrary order. In particular, x 1
2
,k = (k − 1)π, k = 1, 2, 3, ...

Expansions in series of Bessel functions

Consider Jν(x) Bessel function of the first kind of real order ν, ν ≥ −1
2
, and the positive roots

xν,1 < xν,2 < xν,3 < ... < xν,k < ... of the equation Jν(x) = 0.

THEOREM 14 The system of functions r
1
2 Jν(xν,kr/a), k ≥ 1, is orthogonal on the interval

0 < r < a.

PROOF The Bessel function Jν(x) is the regular solution of the equation (1.36)

x2y′′ + xy′ + (x2 − ν2)y = 0. (a)

Consider new function uα(r) = Jν(αr). This function satisfies equation

u′′α +
1

r
u′α +

(
α2 − ν2

r2

)
uα = 0. (b)

Indeed, the left-hand side of (b) can be transformed as

u′′α +
1

r
u′α +

(
α2 − ν2

r2

)
uα =

d2

dr2

[
Jν(αr)

]
+

1

r

d

dr

[
Jν(αr)

]
+

(
α2 − ν2

r2

)
Jν(αr)
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= α2J ′′ν (αr) +
α

r
J ′ν(αr) +

(
α2 − ν2

r2

)
Jν(αr) =

1

r2

{
α2r2J ′′ν (αr) + αrJ ′ν(αr) +

(
α2r2 − ν2

)
Jν(αr)

}
.

The result is equal to zero, which follows from (a).

Correspondingly, the function uβ(r) = Jν(βr) satisfies the equation

u′′β +
1

r
u′β +

(
β2 − ν2

r2

)
uβ = 0. (c)

Multiply equation (c) by ruα(r) and subtract the result from equation (b) multiplied by ruβ(r):

(b)× ruβ(r)− (c)× ruα(r) = ru′′αuβ + u′αuβ +
(
α2 − ν2

r2

)
ruαuβ − ru′′βuα − u′βuα −

(
β2 − ν2

r2

)
ruαuβ

= (α2 − β2)ruαuβ − d

dr

{
r(uαu′β − u′αuβ)

}
= 0.

Integrate the latter equation with respect to r from 0 to a and take into account that uα(r), uβ(r)
and their first derivatives are regular at r = 0. Obtain

(α2 − β2)

∫ a

0

ruα(r)uβ(r)dr = a[uα(a)u′β(a)− u′α(a)uβ(a)].

Here uα(r) = Jν(αr) and uβ(r) = Jν(βr):

(α2 − β2)

∫ a

0

rJν(αr)Jν(βr)dr = a[Jν(αa)βJ ′ν(βa)− αJ ′ν(αa)Jν(βa)]. (d)

Setting α = xν, k/a, β = xν, n/a, we find that the RHS in (d) is zero, which gives

∫ a

0

rJν(xν, k
r

a
)Jν(xν, n

r

a
)dr = 0 (k 6= n). (e)

The latter equality implies that the system of functions r
1
2 Jν(xν, kr/a), k ≥ 1, is orthogonal on the

interval 0 < r < a.

In order to calculate the integral (e) for k = n, divide (d) by (α2−β2) and take the limit of the result
as β → α. Use L’Hospital’s rule as

∫ a

0

rJ2
ν (αr)dr = lim

β→α

{a[Jν(αa)βJ ′ν(βa)− αJ ′ν(αa)Jν(βa)]

α2 − β2

}

= a lim
β→α

{ ∂
∂β

[Jν(αa)βJ ′ν(βa)− αJ ′ν(αa)Jν(βa)]
∂
∂β

[α2 − β2]

}
=

a2

2

[
J
′2
ν (αa) +

(
1− ν2

α2a2

)
J2

ν (αa)
]
.

Setting α = xν, n/a, we find

∫ a

0

rJ2
ν (xν, n

r

a
)dr =

a2

2
J
′2
ν (xν, n). (f)
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By using (1.45) and (1.46) with x = xν, n, we have J
′
ν(xν, n) = −Jν+1(xν, n), which makes it possible

to present (f) in the final form

∫ a

0

rJ2
ν (xν, n

r

a
)dr =

a2

2
J2

ν+1(xν, n) . (g)
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