
Lecture 1

The title of the unit MTH-2C4Y is “Differential Equations and Algorithms”. This autumn semester
module deals with Differential Equations . Algorithms for numerical solutions of Differential Equa-
tions and equations of other types will be considered in the spring semester. A full coverage of the
module is offered by the book “Advanced Engineering Mathematics” by Edwin Kreyszig (John Wiley
and Sons), Chapters 2, 4, 10 and 11 (about 200 pages in total). Lectures will be twice a week, on
Thursdays and Fridays, and will be supported by 3 seminars and four problem classes. Exercises for
each seminar will be displayed on Blackboard. Courseworks (2 per seminar) will be included into
each Exercise Sheet. Assessment is by examination (80%, 3 questions from 6) and coursework (20%).
The courseworks with detailed solutions should be returned by 9th of December, 3pm.

In this autumn module we will mainly deal with a linear differential equation of the second order

y′′ + p(x)y′ + q(x)y = r(x). (0.1)

A function y(x) that satisfies (0.1) is termed as solution of (0.1).

The analysis and the methods developed for equation (0.1) will be generalized to differential equations
of higher order

pn(x)y(n) + pn−1(x)y(n−1) + ....p1(x)y′ + p0(x)y = r(x). (0.2)

We shall learn

(1) how to find the general solutions of the Differential Equations (0.1) and (0.2);
(2) how to solve an initial value problem IVP for (0.1), where the values of the unknown function
y(x0) and its first derivative y′(x0) are specified at some point x = x0;
(3) how to use the method of Frobenius to find a solution to (0.1) in the form of series

y(x) =
∞∑

n=0

anx
n+α;

(4) how to solve a boundary value problem BVP for (0.1), where y(x0) and y(x1) are known and we
need the solution of (0.1) between x0 and x1;

We shall study

(5) solutions of Bessel’s differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0

and Legendre’s differential equation

(1− x2)y′′ − 2xy + n(n + 1)y = 0
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which are important differential equations in applied mathematics. Solutions of these differential
equations are known as Bessel functions and Legendre polynomials.
(6) periodic solutions to equation (0.1), y(x + T ) = y(x), where T is a period, for a periodic right-
hand side (RHS) r(x) with the help of Fourier Series.

Finally, we shall find

(7) solutions of the Elementary Partial Differential Equations

∂2u

∂t2
= c2

0∇2u (wave equation)

∂u

∂t
= k∇2u (heat equation)

∇2u = 0 (Laplace’s equation)

obtaining them by separation of variables in rectangular Cartesian co-ordinates (Fourier analysis),
in cylindrical (Bessel functions are involved) and spherical (Legendre polynomials are involved) co-
ordinates. These solutions describe, in particular, the temperature distributions in solids of different
shapes.

Topics (1) – (4) will be covered in 6 lectures, topics (5) and (6) in 4 lectures each and topic (7) will
be covered in 6 lectures.

First seminar will be in week 4 and will be based on topics (1) – (4). Second seminar in week 7 will
cover topic (5) and some elements of the Fourier analysis from (6). Third seminar will be about the
method of separation (7) and advanced Fourier analysis from (6).

Modeling via Differential Equations

How to translate a physical phenomenon into a set of equations which describes it?

Step 1: Clearly state the assumptions on which the model will be based. These assumptions should
describe the relationships between the quantities to be studied. Usually the assumptions are based
upon some observations and experiments.

Step 2: Completely describe the parameters and variables to be used in the model.

Step 3: Derive mathematical equations relating the parameters and variables.

Consider a vertical spring with upper end fixed and a body attached to lower end. If we pull the body
down a certain distance from its static position and then release it, the body undergoes a motion.
The body is assumed to move strictly vertically.
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Step 1: Mass of the spring is disregarded compared to the mass m of the body. According to New-
ton’s second law, the body motion is governed by balance between the inertia force my′′(t), where
y(t) is the body displacement from the static position, y = 0, with the positive direction downwards,
and t is time, spring force Fs(t), damping force Fd(t) and a given external force Fe(t). Experiments
show that within reasonable limits, the spring force is proportional to the change in the spring length,
Fs = −ky(t), which is known as Hooke’s law, and the damping force is proportional to the body
velocity, Fd = −cy′(t), where k is called the spring stiffness coefficient and c is called the damping
coefficient. Here, k > 0 and c > 0. Initial displacement of the body from its static position is y0 and
initial velocity of the body is equal to zero.

Step 2: We should obtain the body displacement y(t) as a function of time t for given parameters
of the problem m, k, c, y0 and for given external force Fe(t).

Step 3: Newton’s second law provides the differential equation with respect to the body displacement

my′′ = −cy′(t)− ky(t) + Fe(t)

or

y′′ + (c/m)y′ + (k/m)y = Fe(t)/m.

The latter equation has the form (0.1). If the body mass varies in time, m = m(t), or the spring
becomes weaker in time due to aging effect, k = k(t), then the coefficients in the latter equation
should be considered as known functions of time.

[see EK, Section 2.6 for more details and solutions]

Definitions and Basic Theorems

DEFINITION 1 A differential equation is an equation involving independent variables, an un-
known function and its derivatives. Independent variables are real and involved functions are real
and smooth.

In (0.1), x is the real independent variable, y(x) is the unknown real function with its first and second
derivatives being continuous, involved functions are y(x), p(x), q(x), r(x). The involved functions are
assumed real and continuous.

DEFINITION 2 The order of a differential equation is the order of the highest derivative of the
unknown function involved in the equation.
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Lecture 2

DEFINITION 3 A differential equation is said to be ordinary (ODE) if there is just one inde-
pendent variable. Otherwise, a differential equation is said to be partial differential equation (PDE).

Equation (0.1) is ODE of the 2nd order.

Laplace’s equation uxx + uyy + uzz = 0 is PDE of the 2nd order.

We do not study systems of differential equations in this module.

DEFINITION 4 A linear ODE of order n is a differential equation written in the form (0.2).

Equation (0.1) is linear ordinary differential equation of the second order (LODE2).

Equation y′′ =
√

y2
x + 1 is a nonlinear ODE.

We do not study nonlinear differential equations in this module.

Note that other notations for derivatives can be used. For example,

y′′′ = y(3) = d3y/dx3 = yxxx.

In all our considerations, we assume that the independent variable x varies in some given finite in-
terval I = (a, b) or on the entire x- axis, I = (−∞, +∞).

DEFINITION 5 Functions p(x), q(x) in the LODE2 (0.1) and the functions pj(x), j = 0, 1, 2, ......, n
in the LODEn (0.2) are called the coefficients of these equations.

DEFINITION 6 The LODEn (0.2) is said to be written in standard form, if pn(x) ≡ 1.

Equation (0.1) is written in standard form.

DEFINITION 7 A function y = φ(x) is called a solution of the LODEn (0.2) on interval I (perhaps
infinite), if φ(x) is defined and n times differentiable throughout I and is such that equation (0.2)
becomes an identity for any x ∈ I when we replace y(x) and its derivatives in (0.2) by φ(x) and its
corresponding derivatives.

EXAMPLE The function y(x) = sin(ωx) is a solution of the LODE2

y′′ + ω2y = 0, (0.3)

where ω is constant. Indeed,
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y′(x) = ω cos(ωx), y′′(x) = −ω2 sin(ωx) and

−ω2 sin(ωx) + ω2 sin(ωx) ≡ 0!

The functions cos(ωx), c1 sin(ωx), c2 cos(ωx) and c1 sin(ωx)+c2 cos(ωx) are also solutions of equation
(0.3). (Check by substitution)

IMPORTANT! Solution of a differential equation is not unique.

The function y(x) = sin(ωx) is not a solution of the LODE2

y′′ + ω2y = 1.

DEFINITION 8 LODE (0.2) is said to be homogeneous (H) if its right-hand side (RHS) r(x) is
zero for all x ∈ I. If r(x) 6= 0, then (0.2) is said no be nonhomogeneous (NH).

To the NH-LODE2 (0.1), we associate the so called associated homogeneous equation

y′′ + p(x)y′ + q(x)y = 0. (0.4)

THEOREM 1

(i) If y = y1(x) is a solution of the HLODE (0.4) on some interval I, then y = c1y1(x) is also a
solution of (0.4).

(ii) If y = y1(x) and y = y2(x) are two solutions of (0.4) on I, then their linear superposition

y = c1y1(x) + c2y2(x) (0.5)

is also a solution for any arbitrary constants c1 and c2.

PROOF Substitute (0.5) in equation (0.4), collect the terms with c1 and c2, and recall that y = y1(x)
and y = y2(x) are solutions of this equation. ¶

IMPORTANT! THEOREM 1 does not hold for nonhomogeneous LODE.

DEFINITION 9 A general solution of HLODE (0.4) on I is a function of the form (0.5), where
y = y1(x) and y = y2(x) are linearly independent (not proportional) solutions of (0.4).

Any particular solution of the HLODE (0.4) on I is obtained by assigning specific values to the
constants c1 and c2 in (0.5).

A general solution includes all possible solutions of (0.4).

Two linearly independent (not proportional) solutions y = y1(x) and y = y2(x) are said to form a
basis (or fundamental system) of solutions of equation (0.4).

DEFINITION 10 Let y = y1(x) and y = y2(x) be two differentiable functions defined on an
interval I. We say that these functions are proportional (linearly dependent) if and only if there
exists a constant C such that
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y2(x) = Cy1(x) for any x ∈ I.

How to distinguish two linearly independent solutions of equation (0.4) in order to find the general
solution (0.5)?

The following statements are equivalent:

1) y = y1(x) and y = y2(x) are proportional;

2) y2(x)/y1(x) is constant;

3) [y2(x)/y1(x)]′ = 0;

4) y1y
′
2 − y′1y2 = 0.

Therefore, y = y1(x) and y = y2(x) are not proportional on I if and only if y1y
′
2−y′1y2 6= 0 for all x ∈ I.

DEFINITION 11 The Wronskian W (y1, y2)(x) is defined as

W (y1, y2)(x) =

∣∣∣∣
y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ .

THEOREM 2

Two functions y = y1(x) and y = y2(x) are linearly independent on I if and only if W (y1, y2)(x) 6= 0
for all x ∈ I.

Lecture 3

EXAMPLE: y1(x) = sin(ωx) and y2(x) = cos(ωx) are linearly independent:

W (y1, y2)(x) =

∣∣∣∣
sin(ωx) cos(ωx)

ω cos(ωx) −ω sin(ωx)

∣∣∣∣ = −ω sin2(ωx)− ω cos2(ωx) =

−ω
[
sin2(ωx) + cos2(ωx)

]
= −ω 6= 0!

THEOREM 3 (Liouville-Abel formula)

If y = y1(x) and y = y2(x) are two solutions of (0.4) on I, then

W (y1, y2)(x) = W (y1, y2)(x0) exp

(
−

∫ x

x0

p(t)dt

)
, (0.6)

where x0 ∈ I.
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PROOF Calculate

dW

dx
=

d

dx

(
y1y

′
2 − y′1y2

)
= y′1y

′
2 + y1y

′′
2 − y′′1y2 − y′1y

′
2 = y1y

′′
2 − y2y

′′
1 =

y1

[
−py′2 − qy2

]
− y2

[
−py′1 − qy1

]
= −p(x)

(
y1y

′
2 − y′1y2

)
= −p(x)W (x).

Therefore,

dW

dx
= −p(x)W (x).

This first-order differential equation is solved by separation of variables

∫
dW

W
= −

∫
p(x)dx

which provides (0.6).¶

RESULT Theorems 2 and 3 give

Two solutions y = y1(x) and y = y2(x) are linearly independent (not proportional) on I ⇔ (Th2)
W (y1, y2)(x) 6= 0 for every x ∈ I ⇔ (Th3) W (y1, y2)(x0) 6= 0 at a single point of I.

IMPORTANT Functions y = y1(x) and y = y2(x) in Theorem 3 are not arbitrary. They are
solutions of the HLODE (0.4).

The general solution of (0.4) has the form (0.5), where y = y1(x) and y = y2(x) are linearly indepen-
dent. In order to specify the coefficients c1 and c2 in this solution, we need two additional conditions.
In many applications the following conditions are used

y(x0) = K0, y′(x0) = K1, (0.7)

where K0 and K1 are given numbers. The conditions (0.7) are called initial conditions. Homogeneous
LODE equation (0.4) or the nonhomogeneous LODE (0.1) together with the initial conditions (0.7)
are known as an initial value problem (IVP).

THEOREM 4 Suppose that the coefficients p(x) and q(x) in the HLODE (0.4) are continuous on
I and x0 ∈ I. Then the IVP (0.4), (0.7) has a unique solution on I for any K0 and K1.

The uniqueness of the solution of the IVP (0.4), (0.7) is proved in EK, Section “Further proof” in
Chapter 2, pp 148-149.¶

THEOREM 5 If the coefficients p(x) and q(x) in (0.4) are continuous on some interval I, then the
HLODE (0.4) has a general solution on I.

PROOF Let x0 ∈ I. Consider two functions y = y1(x) and y = y2(x) which are the solutions of the
IVP for equation (0.4) with the initial conditions

y1(x0) = 1, y′1(x0) = 0,

y2(x0) = 0, y′2(x0) = 1.
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According to Theorem 4, these functions are uniquely defined.

Calculate the Wronskian W (y1, y2)(x0) at x = x0:

W (y1, y2)(x0) =

∣∣∣∣
y1(x0) y2(x0)
y′1(x0) y′2(x0)

∣∣∣∣ =

∣∣∣∣
1 0
0 1

∣∣∣∣ = 1 6= 0.

Therefore, y = y1(x) and y = y2(x) are linearly independent on I.

Consider a particular solution y = Y (x) of equation (0.4) on I. Let us prove that this solution can
be presented as a linear superposition of the functions y = y1(x) and y = y2(x).

Calculate Y (x0) and Y ′(x0) and formulate the IVP

y′′ + p(x)y′ + q(x)y = 0 (x ∈ I),

y(x0) = Y (x0), y′(x0) = Y ′(x0).

The solution of this IVP is unique (see Theorem 4) and, therefore, has to be equal to Y (x) on I. On
the other hand, the solution of this IVP can be presented as (check!)

y(x) = Y (x0)y1(x) + Y ′(x0)y2(x).

Therefore, any solution y = Y (x) of (0.4) can be presented as (0.5), where c1 = Y (x0) and
c2 = Y ′(x0).¶

RESULT In order to build a general solution of HLODE (0.4), we need to find two linearly inde-
pendent solutions y = y1(x) and y = y2(x) of this equation.

Lecture 4

NONHOMOGENEOUS DIFFERENTIAL EQUATION

RESULT The general solution yGNH(x) of the nonhomogeneous LODE (0.1) is given by

yGNH(x) = yGH(x) + yPNH(x), (0.8)

where

yGH(x) is a general solution of the associated homogeneous equation (which is the equation (0.4)!!!);

yPNH(x) is a particular solution of the nonhomogeneous equation (0.1).
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How to find a particular solution if the general solution of the associated homogeneous equation is
known?

METHOD OF VARIATION OF PARAMETERS (EK 2.16)

A general solution of the associated homogeneous equation (0.4) on I has the form

yGH(x) = c1y1(x) + c2y2(x), (0.9)

where y = y1(x) and y = y2(x) are assumed known functions. The method of variation of parameters
consists in replacing c1 and c2 by functions u(x) and v(x) to be determined so that the resulting
function

yPNH(x) = u(x)y1(x) + v(x)y2(x) (0.10)

is a particular solution of the nonhomogeneous equation (0.1).

By differentiating (0.10) we obtain

y′PNH(x) = u′(x)y1(x) + u(x)y′1(x) + v′(x)y2(x) + v(x)y′2(x).

Let us impose that u(x) and v(x) satisfy the equation

u′(x)y1(x) + v′(x)y2(x) = 0. (0.11)

Then the first derivative reads

y′PNH(x) = u(x)y′1(x) + v(x)y′2(x).

By differentiating this function we find

y′′PNH(x) = u′(x)y′1(x) + u(x)y′′1(x) + v′(x)y′2(x) + v(x)y′′2(x).

By substituting the calculated derivatives into (0.1) and collecting terms with u(x) and v(x), we
obtain

u(x)[y′′1 + p(x)y′1 + y1] + v(x)[y′′2 + p(x)y′2 + y2] + u′(x)y′1 + v′(x)y′2 = r(x).

Since y = y1(x) and y = y2(x) are solutions of the homogeneous equation (0.4), the latter equation
and (0.11) provide the system of algebraic equations with respect to u′(x) and v′(x):

u′(x)y1(x) + v′(x)y2(x) = 0,

u′(x)y′1(x) + v′(x)y′2(x) = r(x).

The solution of this system is

u′(x) = −y2(x)r(x)/W (x), v′(x) = y1(x)r(x)/W (x),

where W (x) = W (y1, y2)(x) is the Wronskian of y1(x) and y2(x). It is important to note that
W (x) 6= 0 since y1(x) and y2(x) constitute a basis of solutions.

Integrating these equations, we obtain
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u(x) = −
∫

y2(x)r(x)

W (x)
dx, v(x) =

∫
y1(x)r(x)

W (x)
dx.

Substituting these expressions for u(x) and v(x) into (0.10), we obtain a solution of the nonhomoge-
neous equation

yPNH(x) = −y1(x)

∫
y2(x)r(x)

W (x)
dx + y2(x)

∫
y1(x)r(x)

W (x)
dx. (0.12)

IMPORTANT Before applying (0.12) make sure that the Differential Equation is written in the
standard form.

IMPORTANT Do not mix y1(x) and y2(x) in (0.12) and calculations of Wronskian W (y1, y2)(x).

IMPORTANT RESULT If two linearly independent solutions of the H-LODE (0.4) y1(x) and
y2(x) are known, then a general solution of the NH-LODE (0.1) is given by formulae (0.8), (0.9) and
(0.12).

REDUCTION OF ORDER

If a solution y1(x) of the H-LODE (0.4) is known, then a second linearly independent solution y2(x)
can be found by solving a first-order differential equation .

A second solution of (0.4) is sought in the form

y = u(x)y1(x), (0.13)

where u(x) is a new unknown function. By substituting (0.13) into H-LODE (0.4) and collecting
terms with u, u′ and u′′, we find

u′′y1 + u′(2y′1 + py1) + u[y′′1 + py′1 + qy1] = 0.

The last term on the left-hand side is zero and we arrive at a first-order differential equation with
respect to U(x) = u′(x):

U ′ + (2y′1/y1 + p(x))U = 0.

This first-order differential equation is solved by separation of variables as

dU

U
= −2dy1

y1

− p(x)dx

with the solution

U(x) = C1y
−2
1 (x) exp

(
−

∫
p(x)dx

)

where C1 is an arbitrary constant which can be taken to be unity. Finally we integrate the differential
equation u′(x) = U(x) and substitute the result into (0.13)

y2(x) = y1(x)

∫
y−2

1 (x) exp
(
−

∫
p(x)dx

)
dx. (0.14)

IMPORTANT y2(x) is not proportional to y1(x) because y2(x)/y1(x) = u(x) 6= Const (Why?)
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RESULT If a solution y1(x) of the associated homogeneous equation (0.4) is known, then a general
solution of the NH-LODE (0.1) can be written using formulae (0.12) and (0.14).

Lecture 5

EXAMPLE: Find a general solution of the nonhomogeneous Legendre equation (n = 1)

(1− x2)y′′ − 2xy′ + 2y = 1 (−1 < x < 1), (0.15)

for which y1 = x is a solution of the associated homogeneous differential equation .

IMPORTANT Equation (0.15) is not written in standard form.

A general solution of NH-LODE is given by (0.8).

Check that y1 = x is a solution of the homogeneous equation (1− x2)y′′ − 2xy′ + 2y = 0.

Check that yPNH(x) = 1/2 a particular solution of (0.15).

In order to find a second solution of the associated homogeneous equation, write this equation in the
standard form (divide by 1− x2):

y′′ − 2x

1− x2
y′ +

2

1− x2
y = 0

and use (0.14) with y1 = x and p(x) = − 2x
1−x2 :

y2(x) = x

∫
x−2 exp

(∫
2xdx

1− x2

)
dx = x

∫
dx

x2(1− x2)
= −1 +

x

2
log

(1 + x

1− x

)
.

A general solution of NH-LODE (0.15) is

yGNH(x) = c1x + c2

[
−1 +

x

2
log

(1 + x

1− x

)]
+

1

2
.

EXAMPLE: Find the solution of the IVP for equation (0.15) with the initial conditions

y(0) = 1, y′(0) = 0.

Calculate by using the general solution yGNH(x):

yGNH(0) = −c2 +
1

2
=⇒ c2 = −1

2
.
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y′GNH(x) = c1 +
c2

2

[
log

(1 + x

1− x

)
+ x

( 1

1 + x
+

1

1− x

)]
,

y′GNH(0) = c1 =⇒ c1 = 0.

The solution of the IVP reads

y(x) = 1− x

4
log

(1 + x

1− x

)
.

EXAMPLE: Find the solution of the Boundary Value Problem (BVP)for equation (0.15) with the
boundary conditions

y(0) = 1, y(
1

2
) = 0.

Calculate by using the general solution yGNH(x):

yGNH(0) = −c2 +
1

2
=⇒ c2 = −1

2
.

yGNH(
1

2
) =

1

2
c1 + 1− 1

8
log 3.

Substitute yGNH(1
2
) into the boundary condition y(1

2
) = 0:

1

2
c1 + 1− 1

8
log 3 = 0 =⇒ c1 =

1

4
log 3− 2

The solution of the BVP reads

y(x) = 1 +
(1

4
log 3− 2

)
x− x

4
log

(1 + x

1− x

)
.

Procedure to solve IVP

In order to solve a IVP for NH-LODE2

y′′ + p(x)y′ + q(x)y = r(x) (x ∈ I), (0.16)

y(x0) = K0, y′(x0) = K1 (x0 ∈ I), (0.17)

where p(x), q(x), r(x) are known continuous functions on I and x0, K0, K1 are
given constants, we should

(1) find two linearly independent solutions y1(x) and y2(x) of the associated homo-
geneous equation;
(2) find a particular solution yPNH(x) of the nonhomogeneous equation (0.16);
(3) present a general solution of (0.16) in the form

yGNH(x) = c1y1(x) + c2y2(x) + yPNH(x); (0.18)
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(4) substitute (0.18) into the initial conditions (0.17)

c1y1(x0) + c2y2(x0) = K0 − yPNH(x0)

c1y
′
1(x0) + c2y

′
2(x0) = K1 − y′PNH(x0); (0.19)

(5) solve the algebraic system (0.19) with respect to the coefficients c1 and c2 and
substitute them into (0.18).

This procedure gives us the solution of the IVP (0.16) -(0.17).

Procedure to solve BVP

Consider NH-LODE2 (0.16) on an interval I = (a, b). A general solution of this
equation has the form (0.18).

In a BVP, two constants c1 and c2 in (0.18) are calculated by using two
boundary conditions at the end points of the interval I, x = a and x = b:

y(a) = K0, y(b) = K1

or

y′(a) = K0, y′(b) = K1

or

y(a) = K0, y′(b) = K1

and other combinations. General form of boundary conditions is

αy(a) + βy′(a) = K0, λy(a) + µy′(a) = K1, (0.20)

where α, β, λ, µ, K0, K1 are known constants.

By substituting the general solution (0.18) into the boundary conditions (0.20), we
arrive at a system of two linear equations with respect to the coefficients c1 and c2
in (0.18). In contrast to a IVP, the solution of a BVP can be not unique even for
smooth involved functions or can be not available.

EXAMPLE: Consider LODE2

y′′ + y = 0

on interval I = (0, π). Its general solution has the form

yG(x) = c1 sin x + c2 cos x.
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Consider the following boundary conditions:

(A)

y(0) = 1, y(π) = 2 =⇒ c2 = 1, −c2 = 2,

therefore, there is not solution of this BVP.

(B)

y(0) = 1, y(π) = −1 =⇒ c2 = 1, −c2 = −1,

therefore, solution of this BVP is not unique.

(C)

y(0) = 0, y′(π) = 2 =⇒ c2 = 0, c1 = −2,

therefore, solution of this BVP is unique, y(x) = −2 sin x.

Boundary Value Problems and so-called Eigen Value Problems for LODEs will be considered again
in final part of this module, which is on solution of PDEs by the method of separation of variables.
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