2H43 INTRODUCTORY THEORETICAL CHEMISTRY Molecular symmetry and Group Theory

3 Lectures by Dr S. H. Ashworth.

IMPORTANT RESULTS

Properties of a group:

- 1. There is a rule to combine two members of a group: known as "multiplication".
- 2. The "multiplication" must be associative: (AB)C = A(BC)
- 3. The group contains an identity element *E*.
- 4. For every element there is an inverse such that: $AA^{-1} = A^{-1}A = E$

Order of a group:

Usually denoted *h* is the number of symmetry *operations* in a group.

Symmetry elements and operations

	Symmetry elements		Symmetry operation
Symbol	Description	Symbol	Description
E	Identity	\hat{E}	No change
C_n	<i>n</i> -fold axis of symmetry	\hat{C}_n	Rotation about axis by $(360/n)^{\circ}$
σ	Plane of symmetry	$\hat{\sigma}$	Reflection through the plane
i	Centre of symmetry	\hat{I}	Reflection through the centre
S_n	Improper rotation (<i>n</i> -fold rotation reflection)	\hat{S}_n	Rotation around axis by $(360/n)^{\circ}$ followed by reflection through a plane perpendicular to the axis

Notation

- Γ The representation of a point group which can either be reducible or written as a linear combination of irreducible representations.
- \hat{R} A general symmetry operation. In an equation this will be substituted by all the symmetry operations of a point group, one after another. (This distinguishes between C_3 and C_3^2 .)
- $\chi(\hat{R})$ The character of symmetry operation \hat{R} .

Some mathematical relationships

$$\sum_{j=1}^{N} d_j^2 = \sum_{j=1}^{N} [\chi_j(\hat{E})]^2 = h$$
(1.1)

Where *N* is the number of symmetry *operations*.

We know that the dot product of two vectors can be written:

$$\mathbf{u} \cdot \mathbf{v} = |u| |v| \cos \vartheta = \sum_{k=1}^{n} u_k v_k \tag{1.2}$$

If we think of a row of the character table in terms of an abstract vector we can write:

$$\sum_{\hat{R}} \chi_i(\hat{R}) \chi_j(\hat{R}) = 0 \qquad i \neq j$$
(1.3)

This is the same as writing:

$$\sum_{\text{classes}} n(\hat{R}) \chi_i(\hat{R}) \chi_j(\hat{R}) = 0 \qquad i \neq j$$
(1.4)

This can be further summarised to:

$$\sum_{\hat{R}} \chi_i(\hat{R}) \chi_j(\hat{R}) = \sum_{\text{classes}} n(\hat{R}) \chi_i(\hat{R}) \chi_j(\hat{R}) = h \delta_{ij}$$
(1.5)

where δ_{ij} represents the Kröneker delta.

To reduce an irreducible representation Γ to a linear combination of irreducible representations with coefficients a_i we use the relation:

$$a_i = \frac{1}{h} \sum_{\hat{R}} \chi(\hat{R}) \chi_i(\hat{R}) = \frac{1}{h} \sum_{\text{classes}} n(\hat{R}) \chi(\hat{R}) \chi_i(\hat{R})$$
(1.6)

(For more detail see Physical Chemistry: a Molecular Approach, McQuarrie and Simon.)

Infra-red and Raman activity:

- 1. Form a reducible representation using x, y, and z matrices on each atom.
- 2. Express this representation in terms of irreducible representations using Equation (1.6)
- 3. Discard irreducible representations corresponding to rotations and translations.
- 4. IR active vibrations transform as the *p*-orbital-like functions. Raman active vibrations transform as the *d*-orbital-like functions.

Allowed electronic transitions:

An electronic transition in a molecule will be allowed when the following condition is fulfilled:

$$\Gamma(\Psi_i) \times \Gamma(\hat{\mu}) \times \Gamma(\Psi_f) \supset A \tag{1.7}$$

Where \supset should be read as "contains" and *A* is the totally symmetric irreducible representation in the appropriate point group (*e.g.* A₁ in C_{2v})

