- Chemical

Nuclei equivalent by symmetry have the same chemical shift

- static
- time averaged
- Magnetic

Symmetry equivalent nuclei must have same coupling to all other non-equivalent nuclei

Example

Look for NMR active nuclei: ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$

(can ignore Cl - no coupling)

Chemically equivalent

All other non-equivalent: only F
H^{1} and H^{2} chemically equivalent so do not look at coupling between these
H^{1} to F : ortho

H^{2} to F : ortho

H^{1} and H^{2} same coupling to F

- magnetically equivalent

Contrast with

By symmetry
F^{a} and F^{b} chemically equivalent
H^{1} and H^{2} chemically equivalent
Now for coupling must compare: H^{1} and H^{2} with F^{a}
H^{1} and F^{a} : ortho
H^{2} and F^{a} : meta

Not the same
Not magnetically equivalent

Notice

- do NOT compare the pairs $\left\{\mathrm{H}^{1}, \mathrm{~F}^{\mathrm{a}}\right\},\left\{\mathrm{H}^{2}, \mathrm{~F}^{\mathrm{b}}\right\}$

Notation

Resonances at δ and coupled by J

- Assign each nucleus a capital letter from the English alphabet

1. $\Delta \delta>J \quad$ Letters well apart

AMX
First order
2. $\Delta \delta \leq J \quad$ Adjacent letters

A B C
Second order

- Magnetic equivalence is shown by a numerical subscript with the value showing the number of equivalent nuclei

$$
\mathrm{A}_{3} \mathrm{X} \quad \mathrm{~A}_{3} \text { e.g. a methyl group }
$$

- Chemical equivalence is shown by a ' superscript together with the same letter as the nucleu to which it is chemically equivalent

> AA'XX' XX'X"X'"X"'

Spin-spin coupling

- Neighbouring nuclear spins aware of each other
- alters their energy
- additional linesplitting
- Analogy

Two bar magnets N/S poles attract, N/N and S/S repel

- Two mechanisms
- through space, dipolar, D
- through bond, indirect, scalar coupling, J
- Pattern of splittings characteristic of the number of coupled spins and their spatial arrangement

Allows molecular connectivities to be determined

- Pairwise interaction

$$
J I_{1} \cdot I_{2}
$$

- J independent of the applied magnetic field B_{0}
- Can see spin-spin coupling over 4 to 5 bonds at most

Typical values for J
${ }^{2} J_{\mathrm{HH}}($ geminal $) \quad=-12 \mathrm{~Hz} \quad{ }^{3} J_{\mathrm{HH}}($ vicinal $)=5 \mathrm{~Hz}$
Aromatic: ortho $=5-9 \mathrm{~Hz}$, meta $=2-3 \mathrm{~Hz}$, para $=0-$ 1 Hz

Effect on the NMR spectrum

Consider only first order spectra:

$$
J \ll \Delta \delta(\mathrm{~Hz})
$$

J independent of $B_{0}, \Delta \delta$ increases with B_{0}
So all NMR spectra tend to first order as the magnetic field strength is increased

Method of successive splittings

- Take each pair of nuclei in turn
- Resonance split into $N+1$ lines where N is the number of magnetically equivalent nuclei
- Intensities given by the binomial coefficients of Pascals triangle

singlet
doublet
triplet
quartet
quintet

Example

A $\mathbf{M}_{\mathbf{2}} \mathbf{X}$ spin system

1. Draw arbitrary positions for the initial resonances

2. Start with the A spin

Now take each of the other spins in turn: a) M M_{2}, two magnetically equivalent nuclei, $N=2$
$N+1$ lines $=3$ lines
Relative intensities 1: $2: 1$

b) Using the splitting pattern from the M now take the X spin

X , one magnetically equivalent nucleus, $N=1$
$N+1$ lines $=2$ lines
Relative intensities 1:1

Each line in the pattern is split

3. Now take the M spin

Then take each of the other spins in turn:
a) A,

One magnetically equivalent nucleus, $N=1$
$N+1$ lines $=2$ lines
Relative intensities 1: 1

Same splitting of M by A as for A by M
b) Using the splitting pattern from the A now take the X spin

X , one magnetically equivalent nucleus, $N=1$
$N+1$ lines $=2$ lines
Relative intensities 1:1

Each line in the pattern is split

4. Now take X spin - just like the A but with $J_{M X}$

Now take each of the other spins in turn: a) M M_{2}, two magnetically equivalent nuclei, $N=2$ $N+1$ lines $=3$ lines
Relative intensities 1:2:1

b) Using the splitting pattern from the M now take the A spin

X , one magnetically equivalent nucleus, $N=1$
$N+1$ lines $=2$ lines
Relative intensities 1:1

Each line in the pattern is split

$J_{A X} J_{A X} J_{A X}$

Special case

- when J equal :
form a composite spin
makes it easier to draw
Example
$\mathrm{AM}_{2} \mathrm{X}$
$J_{A M}=J_{A X}$

A sees M and X as equivalent so $\mathrm{A}[\mathrm{P}]_{3}$

$$
J_{A^{\prime \prime} P^{\prime \prime}}=J_{A M}=J_{A X}
$$

Three equivalent spins , $N+1=4$
Quartet

$$
J_{A}{ }^{\prime \prime}{ }^{\prime \prime}
$$

Equivalent to

A
M_{2}

X

Second order coupling

Spectra more complex

- splitting pattern changes with B_{0}

AB example

$$
\begin{aligned}
& \Delta v=30.5 \mathrm{~Hz} \\
& J=5.7 \mathrm{~Hz}
\end{aligned}
$$

Doublets no longer equal intensity

- inner lines "steal" intensity from the outer

Overall changes

Connectivity

Spin-spin coupling shows connectivity between the NMR resonances

Powerful method for identifying a molecule
Need to know which resonance is coupled to which
Spin decoupling

- irradiation with a second radiofrequency saturates the irradiated resonance ignore its effect on the other nuclei
- older technique

COSY

- two dimensional NMR
- coupled resonances show up as off-diagonal peaks

Spin decoupling

$\mathrm{AM}_{2} \mathrm{X} \quad J_{A M}=J_{M X}=10 \mathrm{~Hz} \quad J_{A X}=20 \mathrm{~Hz}$
M_{2}

Irradiate A
M_{2}

Irradiate M

A
M_{2}
X

Irradiate X

M_{2}

