### Equivalence

## • Chemical

Nuclei equivalent by symmetry have the same chemical shift

- static
- time averaged
- Magnetic

Symmetry equivalent nuclei must have same coupling to **all** other non-equivalent nuclei

Example



Look for NMR active nuclei:  ${}^{1}$ H and  ${}^{19}$ F

(can ignore Cl – no coupling)



Chemically equivalent

All other non-equivalent: only F

H<sup>1</sup> and H<sup>2</sup> chemically equivalent so do not look at coupling between these

 $H^1$  to F: ortho



 $H^2$  to F: ortho



H<sup>1</sup> and H<sup>2</sup> same coupling to F - magnetically equivalent

Contrast with



By symmetry

F<sup>a</sup> and F<sup>b</sup> chemically equivalent

H<sup>1</sup> and H<sup>2</sup> chemically equivalent

Now for coupling must compare:  $H^1$  and  $H^2$  with  $F^a$ 

 $H^1$  and  $F^a$  : ortho  $H^2$  and  $F^a$  : meta

Not the same Not magnetically equivalent



#### Notice

- do NOT compare the pairs  $\{H^1, F^a\}, \{H^2, F^b\}$ 

#### Notation

Resonances at  $\delta$  and coupled by J

- Assign each nucleus a capital letter from the English alphabet
- 1.  $\Delta \delta > J$  Letters well apart A M X First order
- 2.  $\Delta \delta \leq J$  Adjacent letters **A B C** Second order
- Magnetic equivalence is shown by a numerical subscript with the value showing the number of equivalent nuclei

A<sub>3</sub>X A<sub>3</sub> e.g. a methyl group

• Chemical equivalence is shown by a 'superscript together with the same letter as the nucleu to which it is chemically equivalent

# Spin-spin coupling

- Neighbouring nuclear spins aware of each other
  - alters their energy
  - additional linesplitting
- Analogy

Two bar magnets N/S poles attract, N/N and S/S repel

- Two mechanisms
  - through space, dipolar, D
  - through bond, indirect, scalar coupling,  $\boldsymbol{J}$
- Pattern of splittings characteristic of the number of coupled spins and their spatial arrangement

Allows molecular connectivities to be determined

- Pairwise interaction  $J I_1 I_2$
- J independent of the applied magnetic field  $B_0$
- Can see spin-spin coupling over 4 to 5 bonds at most

Typical values for J  ${}^{2}J_{\text{HH}}$  (geminal) = -12 Hz  ${}^{3}J_{\text{HH}}$  (vicinal) = 5 Hz

Aromatic: ortho = 5-9 Hz, meta = 2-3 Hz, para = 0-1Hz

#### Effect on the NMR spectrum

Consider only first order spectra:

 $J \ll \Delta \delta$  (Hz)

J independent of  $B_0$ ,  $\Delta \delta$  increases with  $B_0$ So all NMR spectra tend to first order as the magnetic field strength is increased

Method of successive splittings

- Take each pair of nuclei in turn
- Resonance split into N+1 lines where N is the number of magnetically equivalent nuclei
- Intensities given by the binomial coefficients of Pascals triangle

| 1         | singlet |
|-----------|---------|
| 1 1       | doublet |
| 1 2 1     | triplet |
| 1 3 3 1   | quartet |
| 1 4 6 4 1 | quintet |

Example

- A  $M_2$  X spin system
- 1. Draw arbitrary positions for the initial resonances



Now take each of the other spins in turn: a) M  $M_2$ , two magnetically equivalent nuclei, N=2 N+1 lines = 3 lines Relative intensities 1: 2 :1



b) Using the splitting pattern from the M now take the X spin



X, one magnetically equivalent nucleus, N=1N+1 lines = 2 lines Relative intensities 1:1

Each line in the pattern is split



3. Now take the M spin



Then take each of the other spins in turn: a) A, One magnetically equivalent nucleus, N=1N+1 lines = 2 lines Relative intensities 1: 1



```
Same splitting of M by A as for A by M
```

b) Using the splitting pattern from the A now take the X spin



X, one magnetically equivalent nucleus, N=1N+1 lines = 2 lines Relative intensities 1:1

Each line in the pattern is split





Now take each of the other spins in turn: a) M  $M_2$ , two magnetically equivalent nuclei, N=2 N+1 lines = 3 lines Relative intensities 1: 2 :1



Х

b) Using the splitting pattern from the M now take the A spin



X, one magnetically equivalent nucleus, N=1N+1 lines = 2 lines Relative intensities 1:1

Each line in the pattern is split



Special case

- when J equal : form a composite spin makes it easier to draw

Example

$$AM_2X \qquad \qquad J_{AM} = J_{AX}$$

A sees M and X as equivalent so  $A[P]_3$ 

$$J_{A"P"} = J_{AM} = J_{AX}$$

Three equivalent spins , N+1 = 4

Quartet



# Equivalent to





Second order coupling

Spectra more complex - splitting pattern changes with B<sub>0</sub>

AB example

 $\Delta v = 30.5 \text{ Hz}$ J = 5.7 Hz



Doublets no longer equal intensity

- inner lines "steal" intensity from the outer

### Overall changes



Connectivity

Spin-spin coupling shows connectivity between the NMR resonances

Powerful method for identifying a molecule

Need to know which resonance is coupled to which

Spin decoupling

- irradiation with a second radiofrequency saturates the irradiated resonance ignore its effect on the other nuclei

- older technique

COSY

- two dimensional NMR

- coupled resonances show up as off-diagonal peaks

Spin decoupling

AM<sub>2</sub>X  $J_{AM} = J_{MX} = 10$  Hz  $J_{AX} = 20$  Hz



Irradiate A

 $M_2$ 





Irradiate X



