SCHOOL OF MATHEMATICS

DIFFERENTIAL EQUATIONS - EXERCISES 1

Coursework: The exercises marked with asterisk $*$ should be solved with the solutions clearly presented on paper, which must be put into the marked box in room S 1.10 before 3 pm on 9th of December.

1. Write down a linear ordinary differential equation of order 2 in standard form and explain all of the symbols and notations you use.
2. You are given $y_{1}(x)=\exp (x), y_{2}(x)=\exp (2 x)$. Calculate the Wronskian $W\left(y_{1}, y_{2}\right)(x)$ and show that the functions $y_{1}(x)$ and $y_{2}(x)$ are linearly independent. Explain why the Liouville-Abel formula cannot be used to calculate the Wronskian $W\left(y_{1}, y_{2}\right)(x)$ in this exercise.
3. Let $y_{1}(x)$ and $y_{2}(x)$ be solutions of the differential equation

$$
\begin{equation*}
(x+1) y^{\prime \prime}+y^{\prime}+\left[\log ^{2}|\sin x|\right] y=0 \quad\left(x>-\frac{1}{2}\right), \tag{A}
\end{equation*}
$$

which satisfy the initial conditions

$$
y_{1}(0)=1, \quad y_{1}^{\prime}(0)=0 \quad y_{2}(0)=0, \quad y_{2}^{\prime}(0)=1
$$

Calculate the Wronskian $W\left(y_{1}, y_{2}\right)(x)$ by using Liouville-Abel formula in the form

$$
W\left(y_{1}, y_{2}\right)(x)=W\left(y_{1}, y_{2}\right)(0) \exp \left(-\int_{0}^{x} p(t) \mathrm{d} t\right) .
$$

Deduce a general solution of equation (A) without giving explicit forms of $y_{1}(x)$ and $y_{2}(x)$.
4. Find a constant α such that $y_{1}(x)=x^{\alpha}$ is a solution of Euler equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 . \tag{B}
\end{equation*}
$$

Find a second solution of equation (B), $y_{2}(x)$, using the method of Reduction of Order.
Show that a general solution of equation (B) has the form $y(x)=x^{2}\left(c_{1}+c_{2} \log x\right)$. Find the solution of the IVP for equation (B) with the initial conditions $y(1)=0, y^{\prime}(1)=2$.

5*. (Total marks: 10)
Show that $y(x)=x\left(c_{1}+c_{2} \log x\right)$ is a general solution of the homogeneous equation associated with the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2} . \tag{C}
\end{equation*}
$$

[2 marks]
Find a particular solution of the nonhomogeneous equation (C) by the method of variation of parameters.
[5 marks]
Find the solution of the BVP for equation (C) with the boundary conditions $y(1)=1, y(2)=4$.
[3 marks]
6*. (Total marks: 10)
Chebyshev polynomials $T_{n}(x)=\cos (n \arccos x)$ are polynomials of order n, which satisfy the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0 \quad(-1 \leq x \leq 1) \tag{D}
\end{equation*}
$$

By using the Power Series Method show that equation (D) has a polynomial solution of order n. Give formulas for $T_{0}(x), T_{1}(x)$ and $T_{2}(x)$.
[6 marks]
Find a second solution $y_{2}(x)$ of equation (D) for $n=1$, using the method of Reduction of Order. Show that $y_{2}(x)=\sqrt{1-x^{2}}$.
[4 marks]
7. Use the recurrence relations

$$
\begin{gather*}
(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0, \tag{i}\\
x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x), \tag{ii}
\end{gather*}
$$

where $P_{n}(x)$ is the Legendre polynomial of degree n, to prove the formula

$$
\int P_{n}(x) \mathrm{d} x=\frac{P_{n+1}(x)-P_{n-1}(x)}{2 n+1}+C .
$$

[Hint: Integrate (ii) and account for (i) in the result]

