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Math 028b April 2002 Final – Solutions

March/02 test

Question 1

We can partition event E into those elements of E which are also in event F
and those which are not. We have

n(E) = n(E ∩ F ) + n(E ∩ FC)

⇒ n(E ∩ F ) = n(E) − n(E ∩ FC) = 40 − 30 = 10

Question 2

We draw a counting tree. There are branchings for every time that a coin might
be tossed. A path ends if there have been 2 Heads in a row, 2 Tails in a row or if
4 tosses have been made. Otherwise, the path continues with a new branching.
We have:
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Counting terminal points, we see that there are 8 sequences of tosses possible.

Question 3

We start by filling in a couple of numbers on the tree. We know that n(U) = 300
and n(F ) = 200, so we must have n(FC) = 300−200 = 100. That is, 100 tourists
did not visit France.

Of these 100, there were 40 who visited both Germany and Spain, and 45
who visited Spain but not Germany, while there was nobody who didn’t visit
either of those countries. This accounts for 85 of the 100, so the remaining 15
of them must have visited Germany but not Spain. (That is, the numbers on
the 4 third level branches which follow the FC branch must sum to 100, so the
missing number must be 15.)

Now, we can see that, among the tourists who did not visit France, 40+15 =
55 did visit Germany. Adding these to the 80 that visited both France and Ger-
many, we see that 135 of the tourists visited Germany.
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Question 4

To find n(FC ∪ S), we can add up the numbers on all third level S branches
which are in paths containing either an FC branch or an S branch (or both).
In order to do this, we need to fill in the rest of the numbers on third level
branches. Since there were 80 who went to France and Germany, of whom 10
did not go to Spain, then 70 of them did visit Spain. Likewise, of the 200 who
went to France, 80 went to Germany, so 120 did not. Of these, 30 also did not
go to Spain, so the other 90 did visit Spain. We have:

300 �
�

��

@
@

@@

F

200

FC

����

HHHH

����

HHHH

G
80

GC120

G
55

GC����

����

����

����

XXXX

XXXX

XXXX

XXXX

S

S

S

S

SC

SC

SC

SC

70

10

90

30

40

15

45

0

There are 6 paths through the tree that include an FC branch, an S branch
or both. (All of the paths which end with an S branch, and all of the paths
which start with the FC branch.) Adding up the numbers on the terminal
branches of these paths we get:

Pr[FC ∪ S] = 70 + 90 + 40 + 15 + 45 + 0 = 260

Another Approach

Of course, we can do this simply using the formula n(FC ∪S) = n(FC)+n(S)−
n(FC ∩S). For that, we already know that n(FC) = 100 (calculated in question
3), but we need to find n(S), for which we need to fill in the missing numbers
on S branches, as described above. We get

n(S) = 70 + 90 + 40 + 45 = 245

Now, to get n(FC ∩S), we add up the numbers on the S branches of the 2 paths
which include both an FC branch and an S branch:

n(FC ∩ S) = 40 + 45 = 85

Thus we get

n(FC ∪ S) = n(FC) + n(S) − n(FC ∩ S) = 100 + 245 − 85 = 260

Quicker Approach

It is easier to realize that the only tourists who are not in the set FC ∪ S are
those who did visit France and did not visit Spain, i.e. those who are in F ∩SC .
We can easily find n(F ∩ SC) as

n(F ∩ SC) = n(F ∩ G ∩ SC) + n(F ∩ GC ∩ SC) = 10 + 30 = 40
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That is, doing this we only need to use 2 numbers which were given to us on
the tree, along with n(U), which was also given to us. We get

n(FC ∪ S) = n([F ∩ SC ]C) = n(U) − n(F ∩ SC) = 300 − 40 = 260

Question 5

We wish to construct 5-digit numbers, using only digits from the set {2, 3, 4, 5, 6, 7, 8},
where repetition is allowed. The only restriction is that we want all of the num-
bers to be greater than 35000.

Clearly, a 5-digit number which starts with a 2 is not greater than 35000, so
2 cannot be used as the first digit. A 5-digit number starting with a 4, 5, 6, 7
or 8 must be greater than 35000, so all of these may be used as the first digit.
For a 5-digit number starting with 3, some are greater than 35000 but some are
not. Therefore we must treat this as a separate case.

Case 1: first digit is 3
There is only 1 way to choose the first digit, since it must be 3. Also, in order to
be forming only numbers which are greater than 35000, the second digit must
be at least 5, i.e. must be 5, 6, 7 or 8, so there are 4 choices available for the
second digit. Now, any of the 7 given digits can be used for the third digit, and
likewise for the fourth and fifth digits. Therefore there are

1 × 4 × 7 × 7 × 7 = 4 × 73

different 5-digit numbers greater than 35000 that can be formed using the given
digits, when the first digit is 3.

Case 2 first digit is bigger than 3
There are 5 choices available for the first digit: 4, 5, 6, 7 or 8. Since this ensures
that the number is bigger than 35000, then any of the 7 given digits may be
used for any of the second, third, fourth and fifth digits of the number being
constructed. This gives

5 × 7 × 7 × 7 × 7 = 5 × 74

more 5-digit numbers greater than 35000 that can be formed with the given
digits.

In total, there are 4 × 73 + 5 × 74 such numbers.

Question 6

We need to count the number of ways in which 3 girls and 6 boys can be ar-
ranged in a line with the girls all together. There are 3! ways to arrange the
girls and 6! ways to arrange the boys, and then there are 7 places in the line
of boys into which the group of girls could be put (i.e. before first, second, ...,
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or sixth boy, or after the sixth boy). Therefore there are 3! × 6! × 7 = 3! × 7!
different arrangements possible.

Another Approach
The girls can be arranged within their group in 3! different ways. Now, we
arrange the six boys plus one group of 3 girls into a line, which can be done in
7! different ways. (That is, we consider the group of girls as a single object and
arrange 7 objects in a line.) This gives a total of 3! × 7! different arrangements
possible.

Question 7

If there were no restriction, then each clerk could be assigned to either of the
2 stores, without any consideration of where the other clerks are sent. This
means that each of the 10 clerks would correspond to a decision of the form
‘where should this clerk be sent?’, with 2 choices available for each of these 10
decisions. Therefore, if there were no restrictions, there would be 210 different
ways to assign the clerks.

We do, however, have a restriction here. We are told that each store must
receive at least one clerk. How many of the assignments we calculated do not
satisfy this requirement? Only the assignment in which all 10 clerks are sent to
the first store, and the one in which all 10 clerks are sent to the second store.
Therefore 2 of the assignments we counted should not have been allowed, so we
see that there are 210 − 2 assignments which do satisfy the requirement.

Notice: If we attempt to do this problem by direct counting, rather than
indirect counting, it becomes very complicated. If we assign one clerk to each
store, to ensure that the restriction is met, and then consider how the remaining
8 clerks are assigned, then we are double counting, because we have partially
ordered the clerks who are sent to a particular store, by considering the ‘first’
clerk assigned to a store to be in some way different from the others. We would
need to compensate for this double counting (and that’s the part that’s quite
complicated).

Question 8

We need to count the number of circular permutations of 8 people. This is given
by (8 − 1)! = 7!.

Question 9

We want to count the number of ways in which 8 people can be arranged so
that 5 of them are in a circle and the other 3 are in a line. There are

(

8
5

)

ways
to decide which 5 will sit at the round table. Next, there are (5− 1)! = 4! ways
for these 5 to arrange themselves at the table. Finally, the other 3 can arrange
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themselves in 3! different ways to sit along the wall. Therefore the total number
of possible arrangements is

(

8

5

)

× 4! × 3!.

Question 10

As in question 7, we want to avoid the complications of partial ordering that
arise if we try to count directly. (And the tedium that will result if we use vari-
ous cases for the various possible numbers of men on the committee.) Therefore
we approach this by counting the total number of possible committees and also
counting the number which do not contain at least one man.

Since there are 16 people in total, and the committee is to consist of 5 of
them, then there are

(

16
5

)

different ways to form the committee without regard
for how many men or women there may be on it. Also, since there are 9 women
and 7 men, there are

(

9
5

)

different committees which could be formed from only

the women, i.e. without any men. Therefore there are
(

16
5

)

−
(

9
5

)

different ways
to form a committee with at least one man.

Question 11

We can think of this problem as choosing 10 of the 20 men who will be paired
with women, and then assigning each of these men to one of the women, i.e.
arranging the men. (Alternatively, we could think of it as arranging the women.
But we only need to arrange one group or the other in order to pair them up.)
Therefore the number of different ways in which this can be done is

(

20

10

)

10!

Question 12

Since the 3 identical-sized groups will be doing the same thing, these are in-
distinguishable groups. Therefore when we use the multinomial coefficient to
divide the 12 students into 3 groups of 4, we must ‘undo’ the ordering of the
groups by dividing by the 3! possible arrangements of the 3 groups. Therefore
the number of ways in which the students can be divided up is

(

12

4 4 4

)

÷ 3! =
1

3!

(

12

4 4 4

)

Question 13

Since Charles and Henry must not belong to the same group, then they must be
in different groups. That is, the 3 groups will consist of one containing Charles,
one containing Henry and one that contains neither. Therefore the other 10



6

students must be divided up into 3 to join Charles’ group, 3 to join Henry’s
group and 4 to form the other group. (Note that Charles’ group and Henry’s
group are distinguishable.) The number of ways of forming the groups is now

(

10

3 3 4

)

Question 14

We are simply looking for the number of permutations of 10 specified digits,
where there is repetition among the specified digits. This is the same sort of
thing as permuting the letters of a word, i.e., this is a labelling problem. We
want to count the number of ways to assign labels to the 10 positions of the 10
digit number, using 3 labels that say ‘1’, 3 labels that say ‘2’, 2 labels that say
‘3’ and one label each saying ‘4’ and ‘5’. The number of ways in which this can
be done is

(

10

3 3 2 1 1

)

Question 15

Let S be the set of all ways of choosing 2 cards from a standard deck. Then we
have

n(S) =

(

52

2

)

=
52!

2!50!
=

52 × 51

2
= 26 × 51

Also, let E be the event that neither of the chosen cards is a Heart. Since
there are 39 cards in the deck which are not Hearts, then the number of ways
of choosing 2 non-Hearts is

n(E) =

(

39

2

)

=
39!

2!37!
=

39 × 38

2
= 39 × 19

We see that the probability 2 non-Hearts are drawn is

Pr[E] =
n(E)

n(S)
=

39 × 19

26 × 51
=

3 × 13 × 19

2 × 13 × 3 × 17
=

19

34

Question 16

We have 6 customers. Each of these must choose one of the 2 salespersons.
Thus there are 6 decisions to be made, each involving 2 choices. Letting S be
the number of ways in which the 6 customers can choose salespeople, we have

n(S) = 2 × 2 × ... × 2 = 26

If exactly 3 of the customers choose salesperson A, then the other 3 must choose
salesperson B. Letting E be the event that exactly 3 of the 6 choose A, we see
that the number of different ways this can occur is simply the number of different
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ways of choosing 3 of the 6 people to be the ones who choose A. Therefore we
see that

n(E) =

(

6

3

)

so that Pr(E) =
n(E)

n(S)
=

(

6
3

)

26

Question 17

Let S be the set of all permutations of the 7 letters. Then we have n(S) = 7!.

Let R be the event that the letters A, B and C appear all together. We can
consider these letters to be a single unit. Then we have 5 objects to arrange
in a line: D, E, F , G, and the unit which consists of A, B and C. There are
5! arrangements of these 5 objects possible, as well as 3! ways in which the 3
objects A, B and C can be arranged within their group, so we have n(R) = 5!3!
and we get Pr[R] = 5!3!

7! .

Another Approach:
We can think of arranging the letters D, E, F and G in a line, and then putting
the group containing A, B and C into the line. There are 4! ways to arrange
the D, E, F and G, then 5 choices of where to put the group of 3 other letters
(i.e. before any of the 4 letters, or after the last letter), as well as 3! ways to
arrange those other 3 letters within their group. Then we have

n(R) = 4! × 5 × 3! = (5 × 4!) × 3! = 5!3!

so once again we get Pr[R] = 5!3!
7! .

Question 18

The easiest way to approach this is to think about the complementary event –
that Haley does not select any of the first 3 questions. In that case, Haley must
select 5 of the last 7 questions, which can be done in

(

7
5

)

ways. Letting S be
the set of all ways that Haley could choose 5 of the 10 questions to answer, and
E be the event that Haley chooses at least one of the first 3 questions, we have
n(S) =

(

10
5

)

and n(EC) =
(

7
5

)

, so we get

Pr[E] = 1 − Pr[EC ] = 1 − n(EC)

n(S)
= 1 −

(

7
5

)

(

10
5

)

Question 19

We know that Pr[E ∩ F ] can be found using the formula

Pr[E ∩ F ] = Pr[E|F ] × Pr[F ] =
1

3
× 3

4
=

1

4
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Question 20

Easiest Approach:
We know that the same number came up on all 3 dice. There are 6 numbers
that it might have been, and all are equally likely. Therefore the probability
that the number which came up on all 3 dice was a 6, giving a sum of 18, is 1/6.

The Long Way:
Let S be the set of all possible outcomes of tossing 3 dice. Then each element of
S is an ordered triple of the numbers that came up on the 3 dice (i.e. the first
die, the second die and the third die). Since there are 6 possibilities for each,
we have n(S) = 6 × 6 × 6.

Let A be the event that the 3 dice are all the same, and let E be the event

that the sum of the 3 dice is 18. Then we are looking for Pr[E|A] = Pr[E∩A]
Pr[A] .

In S, there are 6 outcomes which have the same number 3 times (one for each
of the 6 possible numbers which might come up all 3 times), so n(A) = 6 and
Pr[A] = 6

63 . Also, in the set S there is only 1 outcome which has all 3 numbers
the same and also has the sum of the numbers being 18, i.e. the outcome
(6, 6, 6). Therefore n(E ∩ A) = 1 so that Pr[E ∩ A] = 1

63 . Thus we get

Pr[E|A] =
Pr[E ∩ A]

Pr[A]
=

1/63

6/63
=

1

63
× 63

6
=

1

6

Question 21

In order to determine whether or not E and F are independent events, we check
whether or not Pr[E ∩ F ] is equal to Pr[E] × Pr[F ]. We have

Pr[E] × Pr[F ] =
5

8
× 2

5
=

2

8
=

1

4
= Pr[E ∩ F ]

so we see that E and F are independent events.

Question 22

To find Pr[E], we sum the path probabilities for all paths in which event E
occurs. We get

Pr[E] = (.4)(.5) + (.6)(1) = .20 + .6 = .8

Another way to look at it
From the tree structure, we see that events A1 and A2 partition the sample
space. Thus we can partition event E according to these two events:

Pr[E] = Pr[E ∩ A1] + Pr[E ∩ A2]

Now, we use the fact that for any events C and D, C ∩ D can be calculated as
Pr[C|D] × Pr[D]. This gives

Pr[E] = Pr[E|A1] × Pr[A1] + Pr[E|A2] × Pr[A2]
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Now, we simply need to recognize that these probabilities are all given on the
probability tree. We get:

Pr[E] = Pr[E|A1]×Pr[A1]+Pr[E|A2]×Pr[A2] = (.5)(.4)+(1)(.6) = .2+.6 = .8

Notice that this was not in fact any different from the first approach. When
we calculate a path probability, we are simply using the formula Pr[C ∩ D] =
Pr[C|D] × Pr[D], and when we find the probability of a particular event by
adding up various path probabilities, we are in fact using partitioning. (That
is, the tree has partitioned the event.)

Question 23

Pr[E|A1] is simply the probability shown on the tree, on the E branch which
follows the A1 branch. Therefore Pr[E|A1] = .5.

Question 24

Pr[E ∩ A1] is the path probability for the path which contains an A1 branch
followed by an E branch. As we saw before, we have Pr[E ∩A1] = (.4)(.5) = .2.

Question 25

We use a probability tree to model what’s happening in the stochastic process,
to help sort it all out. We can define the following events: R - the professor
does research; C - the professor cleans his office; and F - the professor forgets
his keys (so that FC is the event that he does not forget his keys). We are told
that Pr[R] = .8, Pr[C] = .2. Also, event F always happens when R happens,
so Pr[F |R] = 1, while event F only happens half the time when C happens, so
that Pr[F |C] = .5. We get the following probability tree:

��� R.8

HHH C.2 ���

���

F

F

XXX

XXX

F
C

F
C

1

0
.5

.5

We want to determine the probability that the professor did research last Tues-
day, given the information that he forgot his keys that day. Thus, we are looking
for Pr[R|F ]. This is a Bayes’ Theorem type of question, since we are looking for
the probability of something which comes earlier in the tree, given information
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about something which happens later in the tree. We get:

Pr[R|F ] =
path prob. of the path containing both R and F

sum of path prob.’s of all paths in which F occurs

=
(.8)(1)

(.8)(1) + (.2)(.5)

=
.8

.8 + .1

=
8

9

Question 26

This time, we want to calculate the probability that the professor will remember
(i.e. not forget) his keys on a particular day, without any information about
whether the professor does research or cleans his office that day, so we simply
need to find Pr[FC ]. We get this by summing the path probabilities for all
paths through the tree which include an FC branch. We have:

Pr[FC ] = (8.)(0) + (.2)(.5) = 0 + .1 = .1 =
1

10

Question 27

When a single die is tossed, the probability that a 5 or a 6 shows is 2
6 = 1

3 .
When 3 tosses are made, we are performing Bernoulli trials, since each toss of
a die is independent of what happened on any earlier toss. Thus if we define
success to be that a 5 or a 6 is tossed, we have a series of n = 3 Bernoulli
trials in which the probability of success is p = 1

3 . E is the event that there is
at least one success in the 3 trials. Of course, the easiest way to calculate the
probability of at least one success is by considering the complementary event,
that no successes are observed. We see that

Pr[E] = 1−Pr[EC ] = 1−Pr[0 successes] = 1−
(

3

0

) (

1

3

)0 (

2

3

)3

= 1− 8

27
=

19

27

Question 28

Each of the computers that George tries to install could end up in any of 3
ways: the installation could be completely successful (S), or could be partially
successful (P ), or the computer could be damaged beyond repair (D). We
are told that Pr[S] = .5, Pr[P ] = .3 and Pr[D] = .2. George attempting to
install 10 computers corresponds to n = 10 independent trials of the experiment
‘George tries to install a computer’. The probability that outcome D occurs 7
times and outcome S occurs only once, so that outcome P must have occurred
on the other 10 − (7 + 1) = 2 trials, is given by

(

10

7 2 1

)

(.2)7(.3)2(.5)1
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Question 29

The probability that event D occurs on all of the 10 trials is

(

10

0 0 10

)

(.5)0(.3)0(.2)10 = 1 × 1 × 1 × (.2)10 = (.2)10

Question 30

Having at least one computer being damaged beyond repair is the complement of
having no computers damaged beyond repair. That is, if we consider ‘outcome
D is observed’ to be a success, then both outcomes S and P are failures, so we
have p = .2 and q = .8. In a series of n = 10 independent (Bernoulli) trials, the
probability that no successes are observed is given by

(

10

0

)

(.2)0(.8)10 = (.8)10

ans so the probability of the complementary event, i.e. that at least one com-
puter is damaged beyond repair, is 1− (.8)10.

Question 31

The event (X = 1) contains all sample points in which there is exactly one club
in the hand, and hence also 2 non-clubs. There are

(

13
1

)

ways to choose one

of the 13 clubs, and
(

39
2

)

ways to choose 2 of the 39 non-clubs, so this event

contains
(

13
1

)

×
(

39
2

)

different sample points.

Question 32

Pr[X > 0] = Pr[X = 1] + Pr[X = 2] =
4

9
+

1

3
=

7

9

Another Approach:
Since the event (X > 0) includes all of the possible values of X except for the
value 0, we have

Pr[X > 0] = 1 − Pr[X = 0] = 1 − 2

9
=

7

9

Question 33

We use the formula for expected value of a discrete random variable:

E(X) = 0×Pr[X = 0]+1×Pr[X = 1]+2×Pr[X = 2] = 0×2

9
+1×4

9
+2×1

3
= 0+

4

9
+

2 × 3

9
=

10

9
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Question 34

We use the fact that for any possible value of the random variable X , the
probability that X has exactly that value is given by the probability that X is
no more than that value, less the probability that X is no more than the next
smaller possible value. Here, the next smaller possible value, from 5, is 4, so we
get:

Pr[X = 5] = Pr[X ≤ 5]−Pr[X < 5] = Pr[X ≤ 5]−Pr[X ≤ 4] =
2

3
−1

4
=

8

12
− 3

12
=

5

12

Question 35

We start by drawing a probability tree to model the stochastic process. The
possible outcomes on each draw are R - a red disk is drawn, and G - a green
disk is drawn. At the time of the first draw, 2 of the 5 disks in the bag are red,
while the other 3 are green, so a red disk will be drawn with probability 2

5 = .4
and a green disk will be drawn with probability 3

5 = .6. Since the 2 draws are
performed without replacement, there are only 4 disks in the bag at the time of
the second draw. The proportions of red and green disks in the bag depend on
the colour of the disk which was already removed from the bag on draw 1. We
get:

���� R.4

HHHH G.6 ����

����

R

R

XXXX

XXXX

G

G

.25

.75

.5

.5

⇐ X = 1

⇐ X = 1

X is defined to be the number of red disks drawn, which may be 0, 1 or 2. The
event (X = 1) occurs on all paths through the tree in which there is one R
branch and one G branch, as shown above. We get

Pr[X = 1] = (.4)(.75) + (.6)(.5) = .3 + .3 = .6

Question 36

Since 1
5 + 4

5 = 1, we see that these are the only 2 possible values of X . We first
need to calculate the mean:

µ =

(

0 × 1

5

)

+

(

1 × 4

5

)

= 0 +
4

5
=

4

5

Now, we need to find the variance. We can use either of 2 formulas for this.
Using the easier formula, we have

V (X) = E(X2)−µ2 =

[(

02 × 1

5

)

+

(

12 +
4

5

)]

−
(

4

5

)2

=
4

5
−16

25
=

20

25
−16

25
=

4

25
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Alternatively, using the formula from the definition of V (X) we get:

V (X) = E[(X − µ)2] =

(

0 − 4

5

)2

× 1

5
+

(

1 − 4

5

)2

× 4

5

=

(

−4

5

)2

× 1

5
+

(

1

5

)2

× 4

5

=
16

25
× 1

5
+

1

25
× 4

5

=
16 + 4

25 × 5
=

20

5 × 25
=

4

25

Of course, we were asked to find the standard deviation, not the variance. We
get

σ(X) =
√

V (X) =

√

4

25
=

2

5

Question 37

We have a discrete random variable X with the probability distribution function

x Pr[X = x]

−2 1
2

1 1
2

(Note: We can tell that these are the only possible values of X because their
probabilities sum to 1.)

We are asked to find V (X) = E(X2) − µ2, so we need to find µ and E(X2).

µ = (−2)

(

1

2

)

+ (1)

(

1

2

)

= −1 +
1

2
= −1

2

E(X2) = (−2)2
(

1

2

)

+ (1)2
(

1

2

)

= (4)

(

1

2

)

+ (1)

(

1

2

)

= 2 +
1

2
=

5

2

So V (X) =

(

5

2

)

−
(

1

2

)2

=
5

2
− 1

4
=

10

4
− 1

4
=

9

4

Question 38

In this problem, each possible value of the discrete r.v. X occurs with only
one value of the discrete r.v. Y . For instance, (X = 0) happens whenever
outcome t1 occurs, and when this happens, the value of Y is 5, i.e. (Y = 5)
occurs. So whenever t1 occurs, the event [(X = 0) ∩ (Y = 5)] occurs, so
Pr[(X = 0) ∩ (Y = 5)] = Pr[t1] = .5.
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We are asked to find the value of Pr[(X = 1) ∩ (Y = 5)], i.e. the probability
that X has the value 1 at the same time that Y has the value 5. This is not a
combination that happens with any of the possible outcomes of the experiment.
That is, (X = 1) only happens when outcome t2 occurs, and (Y = 5) only
happens when outcome t1 occurs. Since these never happen at the same time,
we cannot have X = 1 at the same time as Y = 5, so Pr[(X = 1)∩(Y = 5)] = 0.

Question 39

When outcome t1 occurs, we have X = 0 and Y = 5, so XY = 0 × 5 = 0.
When t2 occurs, we have X = 1 and Y = 10, so XY = 10. When t3 occurs,
we have X = 2 and Y = 20, so XY = 40. Therefore XY = 0 only when out-
come t1 occurs, and the probability of this happening is .5, so Pr[XY = 0] = .5.

Question 40

We use the XY values found above, and the probabilities of the various outcomes
t1, t2 and t3 which provide those values of XY . That is, when t1 occurs,
XY = 0, and this happens with probability .5; when t2 occurs, XY = 10,
and this happens with probability .3; and when t3 occurs, XY = 40, and the
probability that this happens is .2, so we get:

E(XY ) = (0)(.5) + (10)(.3) + (40)(.2) = 0 + 3 + 8 = 11

Question 41

We use the fact that E(aX + bY ) = aE(X) + bE(Y ), with a = 5 and b = −3.

E(5X − 3Y ) = 5 × E(X) + (−3) × E(Y ) = 5 × 3 − 3 × (−2) = 15 − (−6) = 21

Question 42

We know that V (aX + b) = a2V (X) and so σ(aX + b) = |a|σ(X). Here, we
have a = 2 and b = −1. We get

σ(Y ) = σ(2X − 1) = |2|σ(X) = 2 ×
√

9 = 2 × 3 = 6

Question 43

Since X is the number of successes observed in n Bernoulli trials with proba-
bility of success p, then X = B(n, p). That is, this defines X to be a binomial
random variable, so X has a binomial distribution. Since X counts the number
of successes observed, which cannot be negative, and must be integer, then the
value of X must be a non-negative integer. (That is, the possible values of X
are 0, 1, 2, ... and n, which are all non-negative integers.) Of course, we know
that the mean of B(n, p) is µ = np, and that the variance of B(n, p) is np(1−p).
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Since X is a binomial random variable, then X is a discrete random variable.
That is, by defining that X is the number of successes in a series of Bernoulli
trials, we have defined that the only possible values of X are (as previously
observed) 0, 1, ... and n, which means that there are only finitely many possible
values which X can have and hence X is a discrete random variable. A normal

random variable, on the other hand, is a continuous random variable, which
may take on any real value. And X is not a continuous random variable, so it
cannot be a normal random variable. We know that, if certain conditions on n
and p are satisfied, then the binomial random variable X will be approximately

normal, but that’s not the same as being a normal random variable.

Question 44

First, we observe that since the given probabilities sum to 1, these must be the
only possibilities. Therefore the only possible values of X are 0 and 1, and the
only possible values of Y are 1 and 2. We can find the probability that X = 0
by considering X to be partitioned according to Y -value, i.e. we have

Pr[X = 0] = Pr[(X = 0) ∩ (Y = 1)] + Pr[(X = 0) ∩ (Y = 2)] = .2 + .1 = .3

Similarly, we consider a partition of (Y = 1):

Pr[Y = 1] = Pr[(X = 0) ∩ (Y = 1)] + Pr[(X = 1) ∩ (Y = 1)] = .2 + .4 = .6

Notice that we have

Pr[X = 0] × Pr[Y = 1] = (.3)(.6) = .18 6= Pr[(X = 0) ∩ (Y = 1)]

This tells us that X and Y are not independent random variables, they are
dependent random variables.

Notice: We can organize the calculations shown above by constructing the joint
distribution table for X and Y . We have:

(Y = 1) (Y = 2) Pr[X = x]
(X = 0) .2 .1 .3
(X = 1) .4 .3 .7

Pr[Y = y] .6 .4

Question 45

We know that if X and Y are independent random variables, then V (X +Y ) =
V (X) + V (Y ). Here, we get

V (X + Y ) = V (X) + V (Y ) =
1

4
+

1

25
= .25 + .04 = .29

Therefore, we have σ(X + Y ) =
√

V (X + Y ) =
√

.29.
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Question 46

We first draw the density function, which runs along the x-axis except be-
tween x = 0 and x = 6. On this interval, it is the line segment joining the
points (0, f(0)) = (0, 0

18 ) = (0, 0) and (6, f(6)) = (6, 6
18 ) = (6, 1

3 ). The value of
Pr[X < 3] will be given by the area under this curve on the interval x < 3, i.e.
the area of the region lying below the y = f(x) and above the x-axis from x = 0
to x = 3.

6 x

1
3

y

�������y = f(x)

3 6 x

1
3

1
6

y

�
�

�
�

�
�

�

����

We see that the region is a triangle. The base (width) of the triangle is the
distance from 0 to 3, i.e. 3, and the height of the triangle is the height of the
function at x = 3, i.e. f(3) = 3

18 = 1
6 . Therefore we have

Pr[X < 3] =
1

2
× 3 × 1

6
=

1

4

Question 47

We see that the possible values of X are evenly spaced, k = 2 units apart.
Therefore we must apply a continuity correction of k

2 = 1. So the event (X ≤ 4)

is approximated by the event (Y < 4 + k
2 ) = (Y < 4 + 1) = (Y < 5) and we see

that Pr[X ≤ 4] is approximated by Pr[Y < 5].

Question 48

This time, since the possible values of X are evenly spaced k = 1 unit apart,
the continuity correction is k

2 = .5. We know that the event (a ≤ X ≤ b) would
be approximated by an event in terms of Y obtained by extending the interval
from a to b by k

2 in each direction. That is, (a ≤ X ≤ b) is approximated by
(a − .5 < Y < b + .5). In this case, we have

(.5 < Y < 1.5) = (a − .5 < Y < b + .5)

so we get a− .5 = .5 ⇒ a = 1 and b+ .5 = 1.5 ⇒ b = 1. That is, we see that the
event (.5 < Y < 1.5) is the approximation for the event (1 ≤ X ≤ 1), which is
just the event (X = 1). Therefore Pr[.5 < Y < 1.5] gives the value of Pr[X = 1].
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Question 49

We need the form Pr[Z < k] in order to use the Z-table. We use the com-
plementary event. That is, we know that Pr[Z > 1.54] = 1 − Pr[Z < 1.54].
From the Z-table, we see that Pr[Z < 1.54] = .9382, so we get Pr[Z > 1.54] =
1 − .9382 = .0618.

Question 50

One Approach:
We use the fact that Pr[a < Z < b] = Pr[Z < b] − Pr[Z < a]. We will also
use the symmetry of the Z-curve to recognize that Pr[Z < −k] = Pr[Z > k],
as well as needing complementation again. We get

Pr[−1.2 < Z < 1.2] = Pr[Z < 1.2]− Pr[Z < −1.2]

= Pr[Z < 1.2]− Pr[Z > 1.2]

= Pr[Z < 1.2]− (1 − Pr[Z < 1.2])

= Pr[Z < 1.2]− 1 + Pr[Z < 1.2]

= 2 × Pr[Z < 1.2]− 1

= 2(.8849)− 1 = 1.7698− 1 = .7698

A Quicker Approach:
We have seen before that Pr[−k < Z < k] = 2Pr[Z < k] − 1. We can simply
remember and use this formula, with k = 1.2 this time, to skip most of the steps
above:

Pr[−1.2 < Z < 1.2] = 2Pr[Z < 1.2]− 1 = 2(.8849)− 1 = .7698

Question 51

We first want to re-express the given piece of information. We use the fact that
Pr[k < Z < 1.3] = Pr[Z < 1.3] − Pr[Z < k], to see that

Pr[k < Z < 1.3] = .2853 ⇒ Pr[Z < 1.3] − Pr[Z < k] = .2853

⇒ Pr[Z < k] = Pr[Z < 1.3]− .2853

From the Z-table, we see that Pr[Z < 1.3] = .9032, so we have

Pr[Z < k] = .9032 − .2853 = .6179

Looking to the Z-table once more, we see that .6179 = Pr[Z < 0.30], so
Pr[Z < k] = Pr[Z < 0.30] and we see that we must have k = 0.30.
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Question 52

We are told that X is normally distributed, with mean µ = 100 and standard
deviation σ = 5. We must find Pr[X < 106]. We get:

Pr[X < 106] = Pr

[

Z <
106 − µ

σ

]

= Pr

[

Z <
106 − 100

5

]

= Pr

[

Z <
6

5

]

= Pr[Z < 1.2]

= .8849

Question 53

We use the fact that Z = X−µ
σ

, so that Pr[X < k] = Pr
[

Z < k−µ
σ

]

. We get

Pr[990 < X < 1020] = Pr[X < 1020]− Pr[X < 990]

= Pr

[

Z <
1020− 1000

10

]

− Pr

[

990 − 1000

10

]

= Pr[Z < 2] − Pr[Z < −1]

= Pr[Z < 2] − Pr[Z > 1]

= Pr[Z < 2] − (1 − Pr[Z < 1])

= Pr[Z < 2] + Pr[Z < 1] − 1

= .9772 + .8413− 1 = .8185

Question 54

The number of candies in the carton must be integer valued, so if we let X be
the number of Wriggly Jigglies in a Super Jumbo carton, X is a discrete random
variable. The possible values of X , which are consecutive integers, are evenly
spaced k = 1 unit apart. We are told that X is approximately normal, which
means that the Normal random variable with the same mean and standard
deviation as X is a good approximation for X . As always, when we use a
normal r.v. (which is continuous) to approximate a discrete r.v., we need to
apply a continuity correction, in this case k

2 = .5. Letting Y be the normal r.v.
with µ = 60 and σ = 5, we use Y to approximate X .
We want to know the probability that a Super Jumbo carton contains more
than 65 Wriggly Jigglies, i.e. Pr[X > 65]. Of course, containing more than
65 candies is the complement of containing no more than 65 candies. That is,
Pr[X > 65] = 1 − Pr[X ≤ 65]. We get:
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Pr[X > 65] = 1 − Pr[X ≤ 65] = 1 − Pr[Y < 65.5]

= 1 − Pr

[

Z <
65.5 − 60

5

]

= 1 − Pr[Z < 1.1]

= 1 − .8643 = .1357

Question 55

A fair coin is being tossed repeatedly and we are interested in whether or not
Heads comes up each time. Since repeated tosses of a coin are independent, we
are performing n = 100 Bernoulli trials in which success is defined as Heads
being tossed, so p = .5 .

X is defined to be the number of times that Heads comes up, so X is a Binomial
r.v., i.e. is counting the number of successes in n = 100 Bernoulli trials with
p = .5, so X = B(100, .5). We want to find Pr[X = 50], which is the probability
of observing exactly k = 50 successes on n = 100 trials with p = .5. This, of
course, is given by:

(

100

50

)

(.5)50(1 − .5)50 =

(

100

50

)

(.5)100 = .079589237...

If your calculator won’t do this calculation (mine will do 100 choose 50, but won’t
do 100!, if I try to do the 100 choose 50 calculation myself), we can use a normal
approximation to the binomial distribution. Since X = B(100, .5), and we have
np = 50 and nq = 50 which are both bigger than 5, we know that the Normal
r.v. with the same mean and standard deviation as X is a good approximation
for X . We have µ = np = 50 and σ =

√
npq =

√

50(.5) =
√

25 = 5. Let Y
be the normal random variable with µ = 50 and σ = 5. Using a continuity
correction of k

2 = 1
2 , as always, we have:

Pr[X = 50] = Pr

[

50 − 1

2
< Y < 50 +

1

2

]

= Pr[49.5 < Y < 50.5]

= Pr

[

49.5 − 50

5
< Z <

50.5 − 50

5

]

= Pr

[

− .5

5
< Z <

.5

5

]

= Pr[−.1 < Z < .1]

= 2 × Pr[Z < .1] − 1

= 2(.5398)− 1

= .0796


