Mathematics 012A Test 2 November 9, 2007 Solutions

CODE 111
$\begin{array}{cccccccccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ \mathrm{C} & \mathrm{A} & \mathrm{D} & \mathrm{A} & \mathrm{D} & \mathrm{D} & \mathrm{A} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{B} & \mathrm{B} & \mathrm{A} & \mathrm{B} & \mathrm{E} & \mathrm{D} & \mathrm{C} & \mathrm{B} & \mathrm{B} & \mathrm{C}\end{array}$

CODE 333

$\begin{array}{llllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{B} & \mathrm{C} & \mathrm{E} & \mathrm{B} & \mathrm{B} & \mathrm{E} & \mathrm{D} & \mathrm{C} & \mathrm{C} & \mathrm{E} & \mathrm{E} & \mathrm{B} & \mathrm{C} & \mathrm{A} & \mathrm{A} & \mathrm{C} & \mathrm{D}\end{array}$

Long Answer for CODE 111

B1.
(a) $2 y y^{\prime}+y^{\prime}=1 \rightarrow(2 y+1) y^{\prime}=1 \rightarrow y^{\prime}=\frac{1}{2 y+1}$
(b) $y^{\prime \prime}=\frac{-1}{(2 y+1)^{2}}\left(2 y^{\prime}\right)=\frac{-2\left(\frac{1}{2 y+1}\right)}{(2 y+1)^{2}}=\frac{-2}{(2 y+1)^{3}}$

B2.
(a) $f^{\prime}(x)=1-3\left(\frac{1}{3}\right) x^{-2 / 3}=1-x^{-2 / 3}=1-\left(\frac{1}{x^{2}}\right)^{1 / 3}$
$f^{\prime}(x)=0$ when $x=1$ or $x=-1$
$f^{\prime}(x)$ is undefined when $x=0$
(b) $\quad f^{\prime \prime}(x)=\frac{2}{3} x^{-5 / 3} \rightarrow f^{\prime \prime}(x)$ is undefined at $x=0$ and equal to zero nowhere

f is concave upward on $(0, \infty)$

B3.
(a) $\quad f$ has critical numbers 0 and -2 .

$$
f^{\prime \prime}(0)=-6 \text { and } f^{\prime \prime}(-2)=6
$$

So f has a relative minimum at $x=-2$ by the second derivative test.

That relative minimum value is $f(-2)=0$.
(b) $\quad f$ has one critical number in $[-1,2]$, namely 0 .

We consider $f(-1)=2$ and $f(2)=-16-$ at the endpoints of $[-1,2]$
and $f(0)=4-$ at the critical number 0 .

It is clear that the absolute maximum value of f on $[-1,2]$ is 4 at $x=0$ and the absolute minimum value of f on $[-1,2]$ is -16 at $x=2$.

B4.

1. Diagram with variables x and y clearly defined.

2. $x^{2}+y^{2}=25$ where $x=x(t)$ and $y=y(t)$
3. $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \rightarrow \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}$
4. When $x=3, y=\sqrt{5^{2}-3^{2}}=4$ and
5. $\frac{d x}{d t}=-1$.
6. So $\frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}=-\frac{3}{4}(-1)=\frac{3}{4}$.
7. That is, the ladder is rising up the wall at $3 / 4 \mathrm{~m} / \mathrm{s}$.
