Mathematics 012A Test 2 November 9, 2007 Solutions

CODE 111																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	Α	D	Α	D	D	Α	С	D	Е	В	в	Α	в	Ε	D	С	В	в	С
COI	DE 33	33																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Α	С	С	в	С	Е	в	В	Е	D	С	С	Е	Е	В	С	Α	Α	С	D

Long Answer for CODE 111

B1.

(a)
$$2yy' + y' = 1 \rightarrow (2y+1)y' = 1 \rightarrow y' = \frac{1}{2y+1}$$

 $-2\left(\frac{1}{2y+1}\right)$

(b)
$$y'' = \frac{-1}{(2y+1)^2}(2y') = \frac{(2y+1)}{(2y+1)^2} = \frac{-2}{(2y+1)^3}$$

B2.

(a)
$$f'(x) = 1 - 3\left(\frac{1}{3}\right)x^{-2/3} = 1 - x^{-2/3} = 1 - \left(\frac{1}{x^2}\right)^{1/3}$$

 $f'(x) = 0$ when $x = 1$ or $x = -1$
 $f'(x)$ is undefined when $x = 0$

(b)
$$f''(x) = \frac{2}{3} x^{-5/3} \rightarrow f''(x)$$
 is undefined at $x = 0$ and equal to zero nowhere

$$\begin{array}{c|c} & & \\ \hline & & \\ \hline & & \\ f'' < 0 & \mathbf{0} & f'' > 0 \end{array}$$

f is concave upward on $(0, \infty)$

(a) f has critical numbers 0 and -2.

f''(0) = -6 and f''(-2) = 6

So *f* has a relative minimum at x = -2 by the second derivative test.

That relative minimum value is f(-2) = 0.

(b) f has one critical number in [-1, 2], namely 0.

We consider f(-1) = 2 and f(2) = -16 – at the endpoints of [-1, 2]

and f(0) = 4 - at the critical number 0.

It is clear that the absolute maximum value of f on [-1, 2] is 4 at x = 0 and the absolute minimum value of f on [-1, 2] is -16 at x = 2.

B4.

1. Diagram with variables *x* and *y* clearly defined.

x is the distance of the base of the ladder from the wall y is the height of the ladder against the wall

- 2. $x^2 + y^2 = 25$ where x = x(t) and y = y(t)
- 3. $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0 \implies \frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt}$
- 4. When x = 3, $y = \sqrt{5^2 3^2} = 4$ and
- 5. $\frac{dx}{dt} = -1$.
- 6. So $\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt} = -\frac{3}{4}(-1) = \frac{3}{4}$.
- 7. That is, the ladder is rising up the wall at 3/4 m/s.