Mathematics $030 \quad$ Final Examination Saturday, April 22, 2006

1. Let $\mathbf{u}=(1,1,0,2)$ and $\mathbf{v}=(3,2,-1,1)$. Find $\mathbf{u}+\mathbf{v}$.

A: $(2,1,-1,-1)$	B: $(-2,-1,1,1)$	$\mathrm{C}:(3,2,0,2)$	$\mathrm{D}:(4,3,1,3)$	$\mathrm{E}:(4,3,-1,3)$

2. Let $\mathbf{u}=(1,1,0,2)$ and $\mathbf{v}=(3,2,-1,1)$. Find $\mathbf{u} \cdot \mathbf{v}$.

A: 7	B: 5	C: 4	D: 20	E: $(3,2,0,2)$

3. Which of the following are linear equations in x, y and z ?
(i) $x+\sqrt{y}+2 z=5$
(ii) $2 x+3 y-4 z=\ln 2$
(iii) $x+x y+z=8$

A: (i) only	B: (ii) only	C: (iii) only	D: none of them	E: all of them

4. Find the augmented matrix for the following system of linear equations.

$$
\begin{array}{r}
6 x-y+5 z=1 \\
3 x+2 y+z=4
\end{array}
$$

| A: $\left[\begin{array}{rrr}6 & -1 & 5 \\ 3 & 2 & 1\end{array}\right]$ | $\mathrm{B}:\left[\begin{array}{rrr\|r}6 & -1 & 5 & 0 \\ 3 & 2 & 1 & 0\end{array}\right]$ | $\mathrm{C}:\left[\begin{array}{rrr\|r}6 & -1 & 5 & 1 \\ 3 & 2 & 1 & 4\end{array}\right]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5. Find the augmented matrix for the following system of linear equations.

$$
\begin{aligned}
x-y & =1 \\
2 y-3 & =-x \\
x & =4
\end{aligned}
$$

A: $\left[\begin{array}{rr\|r}-1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right]$	B: $\left[\begin{array}{rr\|r}1 & -1 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 4\end{array}\right]$	$\mathrm{C}:\left[\begin{array}{ll\|l}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 4\end{array}\right]$
D: $\left[\begin{array}{rr\|r}-1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 4\end{array}\right]$	$\mathrm{E}:\left[\begin{array}{rr\|r}1 & -1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right]$	

6. Which one of the following is not in row-reduced echelon form?

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
D=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

A: A	$\mathrm{~B}: B$	$\mathrm{C}: C$	$\mathrm{D}: D$	$\mathrm{E}: E$

7. The system of linear equations

$$
\begin{aligned}
x-2 y+z & =2 \\
2 x-4 y+2 z & =4 \\
-x+2 y-z & =2
\end{aligned}
$$

has

A: a three-parameter family of solutions
B: a two-parameter family of solutions
C: a one-parameter family of solutions
D: a unique solution
E: no solution

8. The system of linear equations

$$
\begin{aligned}
x-y+2 z & =2 \\
-2 y+4 z & =4 \\
-y+2 z & =2
\end{aligned}
$$

has

A: a three-parameter family of solutions
B: a two-parameter family of solutions
C: a one-parameter family of solutions
D: a unique solution
E: no solution

9. Let $\left[\begin{array}{lll|l}1 & 0 & 2 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 3 & 6\end{array}\right]$ be the augmented matrix for a system of linear equations. The solution to this system of equations is

A: $(1,3,2)$
Let $\left[\begin{array}{lll\|l\|l\|l\|}1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1\end{array}\right]$ be the augmented matrix for a system of linear equations. The solution

to this system of equations is

$\mathrm{A}:(0, t, 1)$	$\mathrm{B}:(1-2 t, t, 1)$	$\mathrm{C}:(1-2 t, 0, t)$	$\mathrm{D}:(1-2 t, 1, t)$	$\mathrm{E}:(1+2 t, 1, t)$

Use the following in questions 11, 12 and 13.
The matrix $\left[\begin{array}{ccc|c}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & c^{2}-1 & c-1\end{array}\right]$ is the augmented matrix for a system of three linear equations in three unknowns x, y and z.
11. For what value(s) of c does this system have exactly one solution?

A: no values	B: $c=-1$ only	C: $c=1$ only	D: $c=1$ or -1 only	$\mathrm{E}: c \neq \pm 1$

12. For what value(s) of c does this system have infinitely many solutions?

A: no values	$\mathrm{B}: c=-1$ only	$\mathrm{C}: c=1$ only	$\mathrm{D}: c=1$ or -1 only	$\mathrm{E}: c \neq \pm 1$

13. For what value(s) of c does this system have no solution?

A: no values	B: $c=-1$ only	C: $c=1$ only	D: $c=1$ or -1 only	$\mathrm{E}: c \neq \pm 1$

14. If A is a 2×3 matrix, B is a 3×3 matrix and C is a 3×2 matrix, which one of the following operations is not defined?

$\mathrm{A}: A C+B$	$\mathrm{~B}: B C$	$\mathrm{C}: A^{T}+C$	$\mathrm{D}: C A$	$\mathrm{E}: C^{T} B$
If $\left[\begin{array}{rr}1 & 2 \\ -3 & 4\end{array}\right]\left[\begin{array}{rr}1 & 3 \\ -1 & 2\end{array}\right]=\left[c_{i j}\right]$, find c_{21}.	D: 9	$\mathrm{E}: 11$		
A: 7 $\mathrm{~B}:-7$ $\mathrm{C}:-1$				
Find the value of x for which $\left[\begin{array}{ll}5 & x \\ 1 & 4\end{array}\right]$ has no inverse.				

A: -20	B: -5	C: 0	D: 5	E: 20

17. Let $A=\left[\begin{array}{rr}1 & 3 \\ -1 & 5\end{array}\right]$. If $A^{-1}=B=\left[b_{i j}\right]$, find b_{12}.
$\left.\begin{array}{ll|l|l|l|}\hline \mathrm{A}:-\frac{1}{8} & \mathrm{~B}: \frac{5}{8} & \mathrm{C}: \frac{1}{8} & \mathrm{D}:-\frac{3}{8} & \mathrm{E}: 3 \\ \hline\end{array} \begin{array}{lll}1 & 2 & 1 \\ 2 & 5 & 2 \\ 0 & 0 & 1\end{array}\right]$. If $A^{-1}=B=\left[b_{i j}\right]$, find b_{13}.
$\left.\begin{array}{l}\hline \text { A: } 4 \\ \text { The rank of }\left[\begin{array}{ll|l|l|}1 & \text { B: } 0 & \text { C: }-1 & \text { D: } 2 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 0\end{array}\right] \text { is }\end{array}\right]$

A: 2	B: 0	C: 1	D: 4	E: 3

20. Given $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $A^{-1}=\left[\begin{array}{rrr}0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$. In the solution to the system of linear equations

$$
\begin{array}{r}
a x+b y+c z=3 \\
d x+e y+f z=2 \\
g x+h y+i z=1
\end{array}
$$

the value of x is

$\mathrm{A}: 1$	$\mathrm{~B}: 3$	$\mathrm{C}: 2$	$\mathrm{D}: 0$	$\mathrm{E}:-1$

21. A system of linear equations has 5 equations in 8 unknowns. Which one of the following is true?
(A) The system always has a solution.
(B) The system never has a solution.
(C) If the system has a solution then it has exactly 3 parameters in the solution.
(D) If rank $A=\operatorname{rank}[A \mid \mathbf{b}]=3$ then the linear system $A \mathbf{x}=\mathbf{b}$ has exactly 5 parameters in the solution.

A: A	B: B	C: C	D: D	E: none of A,B,C,D

22. Which one of the following is true?
(A) If $\operatorname{rank} A=\operatorname{rank}[A \mid \mathbf{b}]=5$, then the corresponding linear system $A \mathbf{x}=\mathbf{b}$ must have exactly 5 equations in exactly 5 unknowns.
(B) If $\operatorname{rank} A=\operatorname{rank}[A \mid \mathbf{b}]=5$ and the corresponding linear system $A \mathbf{x}=\mathbf{b}$ has exactly 5 unknowns, then the system has a unique solution.
(C) Every homogeneous linear system of 5 equations in 5 unknowns has only the trivial solution.
(D) Every linear system of 5 equations in 5 unknowns has a unique solution.

A: A	B: B	C: C	D: D	E: none of A,B,C,D

23. If $\operatorname{rank} A=3$ and $\operatorname{rank}[A \mid \mathbf{b}]=4$, then the corresponding linear system $A \mathbf{x}=\mathbf{b}$ has
(i) no solution
(ii) exactly one solution
(iii) exactly three or four solutions
(iv) exactly 1 parameter in the solution.

A: (i)	B: (ii)	C: (iii)	D: (iv)	E: none of A,B,C,D

24. Which one of the following is true?
(A) Every system of linear equations with 7 equations in 4 unknowns has infinitely many solutions.
(B) Every system of linear equations with 4 equations in 7 unknowns has infinitely many solutions.
(C) Every system of homogeneous linear equations with 4 equations in 7 unknowns has infinitely many solutions.
(D) Every system of homogeneous linear equations with 7 equations in 4 unknowns has infinitely many solutions.

A: A	B: B	C: C	D: D	E: none of A,B,C,D

25. If $A=\left[\begin{array}{rrr}1 & -1 & 0 \\ 2 & 0 & 1\end{array}\right]$ and B is the row reduced echelon form of A, then the first row of B is

| $\mathrm{A}:\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]$ | $\mathrm{B}:\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]$ | $\mathrm{C}:\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | $\mathrm{D}:\left[\begin{array}{lll}1 & 0 & \frac{1}{2}\end{array}\right]$ | $\mathrm{E}:\left[\begin{array}{lll}1 & 0 & -\frac{1}{2}\end{array}\right]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

26. Find $\operatorname{det}\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]$.

A: 11	B: 5	C: 10	$\mathrm{D}:-11$	$\mathrm{E}:-5$

27. Find the 2,3-cofactor of the matrix $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & 2 & 2 \\ 2 & 6 & 5\end{array}\right]$.

A: 8	B: 2	C: 16	D: -8	E: -16

28. Find det $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 1\end{array}\right]$
29. Which one of the following is false?
(i) $\operatorname{det}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=0$
(ii) $\operatorname{det}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4\end{array}\right]=8$
(iii) $\operatorname{det}\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 1 \\ 4 & 1 & 2\end{array}\right]=8$
(iv) $\operatorname{det}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]=8$
(v) $\operatorname{det}\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 4\end{array}\right]=8$

A: (i)	B: (ii)	C: (iii)	D: (iv)	E: (v)
30. If det $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=5$, then $\operatorname{det}\left[\begin{array}{ccc}g & h & i \\ 3 d & 3 e & 3 f \\ a & b & c\end{array}\right]=$				

$\mathrm{A}:-15$	$\mathrm{~B}: 15$	$\mathrm{C}: 5$	$\mathrm{D}:-5$	$\mathrm{E}:$ none of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

31. If $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=3$, then $\operatorname{det}\left[\begin{array}{lll}a & d & g+2 a \\ b & e & h+2 b \\ c & f & i+2 c\end{array}\right]=$

A: -3	B: 3	C: -6	D: 6	E: none of A,B,C,D
Find det	$\left[\begin{array}{llll}1 & 2 & 4 & 1 \\ 1 & 4 & 5 & 4 \\ 1 & 2 & 6 & 2 \\ 1 & 2 & 6 & 5\end{array}\right]$			

A: 16	B: 15	C: 12	D: 32	E: 18

33. Let A be a 3×3 matrix with $\operatorname{det} A=5$. Find the value of $\operatorname{det}(2 A)$.

A: 250	B: 10	C: 25	D: 40	E: 20

34. Let A and B be $n \times n$ matrices with $\operatorname{det} A=5$ and $\operatorname{det} B=10$. Which of the following are false?
(i) A and B are both invertible.
(ii) $\operatorname{det}\left(A^{-1} B\right)=2$
(iii) $\operatorname{det}\left(B^{T} A^{T}\right)=50$
(iv) Every linear system $A \mathrm{x}=\mathrm{b}$ has a unique solution.

A: none of them	B: (i) only	C: (ii) only	D: (iii) only	E: (iv) only

35. For the linear system

$$
\begin{gathered}
\begin{aligned}
a x+b y+c z & =k \\
d x+e y+f z & =l, \\
g x+h y+j z & =m
\end{aligned} \\
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right]=4, \\
\operatorname{det}\left[\begin{array}{ccc}
k & b & c \\
l & e & f \\
m & h & j
\end{array}\right]=8, \\
\operatorname{det}\left[\begin{array}{ccc}
a & k & c \\
d & l & f \\
g & m & j
\end{array}\right]=12,
\end{gathered}
$$

Then, in the solution for this system, the value of z is

| A: 2 | B: 4 | C: 8 | D: 20 | E: 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | 36. A is a 3×3 matrix with $\operatorname{det} A=4$ and Adj \(A=\left[\begin{array}{rrr}-4 \& 5 \& -2 \\

-4 \& 2 \& 0 \\
4 \& -3 \& 2\end{array}\right]\). If $A^{-1}=\left[c_{i j}\right]$, then the value of c_{21} is

A: -4	B: -1	C: -16	D: 4	E: 1

37. If A is a 4×4 matrix with $\operatorname{det}(A)=3$, then $\operatorname{det}(\operatorname{Adj} A)=$

A: $\frac{1}{3}$	B: 3	C: 9	D: 27	E: 81

38. Let $\mathbf{u}=(2,1,3), \mathbf{v}=(-3,2,4)$ and $\mathbf{w}=(3,12,30)$. Then \mathbf{w} can be written (uniquely) as a linear combination $a \mathbf{u}+b \mathbf{v}$. Find the value of a.

A: 3	B: 4	C: 5	D: 6	E: 7

39. Let $\mathbf{u}=(1,1,1), \mathbf{v}=(0,2,1)$. Which one of the following is not a linear combination of \mathbf{u} and \mathbf{v} ?

A: $(0,0,0)$	$\mathrm{B}:(1,1,1)$	$\mathrm{C}:(1,3,2)$	$\mathrm{D}:(1,-1,0)$	$\mathrm{E}:(2,4,2)$

40. Which one of the following sets of vectors is linearly independent?

A: $\{(1,0,0),(1,2,0),(2,3,5)\}$	B: $\{(1,1,1),(1,0,1),(2,2,2)\}$		
C: $\{(1,0,0),(0,1,0),(1,1,0)\}$	D: $\{(1,1,1),(1,1,0),(0,1,1),(1,0,1)\}$		
E: $\{(0,0,0)\}$			

41. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ be vectors in \mathbb{R}^{4} and let A be the 4×5 matrix with ${ }^{\text {th }}$ column $\mathbf{a}^{i}=\mathbf{v}_{i}$. Suppose that the row-reduced echelon form of A is

$$
\left[\begin{array}{rrrrr}
1 & 2 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Which one of the following is false?

A: $\mathbf{v}_{2}=2 \mathbf{v}_{1}$	B: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent.			
C: $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent.	D: $\mathbf{v}_{4}=-\mathbf{v}_{1}+2 \mathbf{v}_{3}$			
E: $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{5}\right\}$ is linearly independent.				

42. For what value of k is the set of vectors $\{(1,0,0),(1,2,8),(1,3, k)\}$ linearly dependent?

A: 8	B: 16	C: 12	D: 4	E: 24

43. Which one of the following sets of vectors is a subspace of \mathbb{R}^{3} ?

A: $\{(0,0,0),(1,1,1)\}$
B: $\{(a, a+1, a) \mid a$ is a real number $\}$
C: $\left\{(a, b, c) \mid a^{2}+b^{2}+c^{2}=16\right\}$
D: the set of all vectors in \mathbb{R}^{3} except the vector $(1,0,1)$
E: $\{(a, a+b, b) \mid a, b$ are real numbers $\}$

44. Which one of the following sets of vectors is not a subspace of \mathbb{R}^{3} ?

A: $\{(0,0,0)\}$
B: $\{a(1,1,1) \mid a \geq-2\}$
C: \mathbb{R}^{3}
D: $\{(a, b, c) \mid 2 a+3 b-4 c=0\}$
E: the set of all linear combinations of the vectors $(1,1,1)$ and $(2,2,2)$.

45. Which one of the following sets of vectors is a spanning set for \mathbb{R}^{3} ?

A: $\{(1,1,1),(1,0,1)\}$	B: $\{(1,1,1),(2,2,2),(3,3,3),(1,1,0)\}$	
C: $\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$	D: $\{(1,0,0),(0,1,0),(1,1,0)\}$	
E: $\{(0,0,0),(1,0,1),(1,1,0)\}$		

46. Let S be the subspace of \mathbb{R}^{4} of all vectors of the form $(x+y, x-y, x, y)$. Which one of the following is false?

A:	The vector $(0,0,0,0)$ is in S.
B:	The vector $(2,0,1,1)$ is in S.
C: $\{(1,1,1,0),(1,-1,0,1)\}$ is a basis for S.	
D: $\{(2,0,1,1),(1,-1,0,1)\}$ is a basis for S.	
E:	The dimension of S is 4.

47. Which one of the following is false?

A: $\{(0,0,0)\}$ is a subspace of \mathbb{R}^{3} with dimension 1 .
B: The dimension of \mathbb{R}^{3} is 3 .
C: Every set of 4 vectors in \mathbb{R}^{3} is linearly dependent.
D: $\{(1,1,1)\}$ can be extended to a basis for \mathbb{R}^{3}.
E: The subspace of \mathbb{R}^{3} spanned by the set $\{(0,0,0),(1,0,1),(0,1,0),(1,1,1)\}$ has dimension 2.
48. The matrix $\left[\begin{array}{rrrrr}1 & 2 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 & -2 \\ 1 & 2 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 & -2\end{array}\right]$ has row-reduced echelon form $\left[\begin{array}{rrrrr}1 & 0 & 2 & -2 & 7 \\ 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Let S be the subspace of \mathbb{R}^{4} spanned by $\{(1,0,1,0),(2,1,2,1),(2,0,2,0),(0,1,0,1),(3,-2,3,-2)\}$. A basis for S is

A: $\{(1,0,0,0),(0,1,0,0)\}$	B: $\{(2,0,0,0),(-2,1,0,0),(7,-2,0,0)\}$	
C: $\{(1,0,1,0),(2,1,2,1)\}$	D: $\{(2,0,2,0),(0,1,0,1),(3,-2,3,-2)\}$	
E: none of the above		

49. Consider the homogeneous system of linear equations

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}-x_{4} & =0 \\
x_{1}+2 x_{2}+x_{3} & =0 \\
2 x_{1}+3 x_{2}+2 x_{3}-x_{4} & =0
\end{aligned} .
$$

The augmented matrix for the system has row-reduced echelon form

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 1 & -2 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so a basis for the solution space of this system is

A: $\{(1,0,1,-2),(0,1,0,1)\}$	B: $\{(1,0,1,0),(-2,1,0,1)\}$
C: $\{(1,0,0,0),(0,1,0,0)\}$	D: $\{(-1,0,1,0),(2,-1,0,1)\}$
E: none of the above	
	0

50. The matrix $\left[\begin{array}{rrrrrrrr}1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
has row-reduced echelon form $\left[\begin{array}{cccccccc}1 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & 1 / 2 & 0 & 0 & -1 / 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 / 2 & 1 / 2 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0\end{array}\right]$.
Therefore, a basis for \mathbb{R}^{5} which includes the vectors $\mathbf{v}_{1}=(1,1,1,1,1), \mathbf{v}_{2}=(1,-1,-1,-1,-1)$ and $\mathbf{v}_{3}=(-1,-1,-1,-1,1)$ is

A: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3},(0,0,0,1,0),(0,0,0,0,1)\right\}$
B: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3},(0,1,0,0,0),(0,0,1,0,0)\right\}$
C: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3},(1,0,0,0,0),(0,0,0,0,1)\right\}$
D: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3},(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0)\right\}$
E: none of the above.

