1.	Mathematics 030 Final Examination Saturday, April 22, 2006 1. Let $\mathbf{u} = (1, 1, 0, 2)$ and $\mathbf{v} = (3, 2, -1, 1)$. Find $\mathbf{u} + \mathbf{v}$.						22, 2006	
	A: $(2, 1, -1, -1)$	B: $(-2, -1)$, 1, 1)	C: $(3, 2, $	(0, 2)	D: (4, 3, 1	, 3)	E: $(4, 3, -1, 3)$
2.	Let $\mathbf{u} = (1, 1, 0, $	2) and $v = (3, 2)$, -1, 1).	Find $\mathbf{u} \bullet$	v.			
	A: 7	B: 5	C: 4		D: 20		E: (3	, 2, 0, 2)
3.	Which of the following are linear equations in x, y and z ?							
	(i) $x + \sqrt{y} + 2z = 5$							
	(ii) $2x + 3y - 4z = \ln 2$							
	(iii) $x + xy + z = 8$							
	A: (i) only	B: (ii) only	C: (iii)) only	D: no	one of the	n	E: all of them
4.	Find the augmented matrix for the following system of linear equations.							

5. Find the augmented matrix for the following system of linear equations.

$$x - y = 1$$
$$2y - 3 = -x$$
$$x = 4$$

$\begin{tabular}{ c c c c c } \hline A: & \begin{bmatrix} -1 & 1 & & 1 \\ 1 & 2 & 3 \\ 0 & 1 & & 4 \end{bmatrix} \end{tabular}$	$B: \left[\begin{array}{rrr} 1 & -1 & \ 1 \\ 1 & 2 & 3 \\ 1 & 0 & \ 4 \end{array} \right]$	$C: \left[\begin{array}{rrr} 1 & 1 & \ 1 \\ 1 & 2 & 3 \\ 1 & 0 & \ 4 \end{array} \right]$
$D: \begin{bmatrix} -1 & 1 & & 1 \\ 1 & 2 & & 3 \\ 1 & 0 & & 4 \end{bmatrix}$	$E: \left[\begin{array}{rrr} 1 & -1 & \ 1 \\ 1 & 2 & \ 3 \\ 0 & 1 & \ 4 \end{array} \right]$	

6. Which one of the following is <u>not</u> in row-reduced echelon form?

A	$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad E =$	_	
A: A	B: <i>B</i>	C: C	D: <i>D</i>	E: <i>E</i>

7. The system of linear equations

has

A: a three-parameter family of solutions	
B: a two-parameter family of solutions	
C: a one-parameter family of solutions	
D: a unique solution	
E: no solution	

8. The system of linear equations

has

B: a two-parameter family of solutions
C: a one-parameter family of solutions
D: a unique solution
E: no solution

9. Let $\begin{bmatrix} 1 & 0 & 2 & | & 5 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 3 & | & 6 \end{bmatrix}$ be the augmented matrix for a system of linear equations. The solution to this system of equations is

A: $(1, 3, 2)$	B: $(5, 3, 2)$	C: $(5, 3, 6)$	D: $(-1, 3, 2)$	E: none of A,B,C,D
$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$	1]			

10. Let $\begin{bmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 1 & 0 & | & 1 \end{bmatrix}$ be the augmented matrix for a system of linear equations. The solution to this system of equations is

A: $(0, t, 1)$	B: $(1 - 2t, t, 1)$	C: $(1 - 2t, 0, t)$	D: $(1 - 2t, 1, t)$	E: $(1+2t, 1, t)$		
Use the following in questions 11, 12 and 13.						

The matrix $\begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & c^2 - 1 & | & c - 1 \end{bmatrix}$ is the augmented matrix for a system of three linear

equations in three unknowns x, y and z.

11. For what value(s) of c does this system have exactly one solution?

	A: no values	B: $c = -1$ only	C: c = 1 only	D: $c = 1$ or -1 only	$E: c \neq \pm 1$
12.	For what value(s) of c does this system.	stem have infinite	ely many solutions?	

A: no values B	B: c = -1 only	C: c = 1 only	D: $c = 1$ or -1 only	$E: c \neq \pm 1$
----------------	-----------------	----------------	-------------------------	-------------------

10.	For what value(s) of	c does this syste	em nave no soluti	.011.	
				D: $c = 1 \text{ or } -1 \text{ onl}$	
14.	If A is a 2×3 matr		3 matrix and C i	s a 3×2 matrix,	which one of the
	following operations	is <u>not</u> defined?			
	A: $AC + B$	B: <i>BC</i>	$C: A^T + C$	D: CA	$E: C^T B$
15.	$If \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 3 \end{bmatrix}$	$\begin{bmatrix} 3\\2 \end{bmatrix} = [c_{ij}], \text{ find}$	<i>C</i> ₂₁ .		
	A: 7 B:	-7	C: −1	D: 9	E : 11
16.	Find the value of x for $x = 1$	or which $\begin{bmatrix} 5 & x \\ 1 & 4 \end{bmatrix}$	has no inverse	·.	
	A: -20	B: −5	C: 0	D: 5	E: 20
17.	Let $A = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}$.	If $A^{-1} = B = [$	b_{ij}], find b_{12} .		
	A: $-\frac{1}{8}$	3 : $\frac{5}{8}$	$C:\frac{1}{8}$	D: $-\frac{3}{8}$	E: 3
18.	Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. If $A^{-1} = B =$	$[b_{ij}], \text{ find } b_{13}.$		
	A: 4 B:	0	C: −1	D: 2	E : 1
19.	The rank of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$				
		0	C : 1	D: 4	E: 3
20.	Given $A = \begin{bmatrix} a & b \\ d & e \\ g & h \end{bmatrix}$ linear equations	$\begin{bmatrix} c \\ f \\ i \end{bmatrix}$ and $A^{-1} =$	$= \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$. In the solution	to the system of
	iniear equations	ax +	-by + cz =	3	
		$\frac{dx}{dx}$ +	-ey + fz =	2	
		gx +	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 1	
	the value of x is	~	-		
	A: 1 B:	3	C: 2	D: 0	E : -1
91	A system of linear or	unations has 5 o	austions in 8 un	znowne Which or	o of the following

13. For what value(s) of c does this system have no solution?

- 21. A system of linear equations has 5 equations in 8 unknowns. Which one of the following is true?
 - (A) The system always has a solution.
 - (B) The system never has a solution.
 - (C) If the system has a solution then it has exactly 3 parameters in the solution.

(D) If rank $A = \text{rank } [A \mid \mathbf{b}] = 3$ then the linear system $A\mathbf{x} = \mathbf{b}$ has exactly 5 parameters in the solution.

	A: A	B: B	C: C	D: D	E: none of A,B,C,D
22.	Which one of t	he following is	true?		

(A) If rank $A = \operatorname{rank} [A \mid \mathbf{b}] = 5$, then the corresponding linear system $A\mathbf{x} = \mathbf{b}$ must have exactly 5 equations in exactly 5 unknowns.

(B) If rank $A = \text{rank} [A \mid \mathbf{b}] = 5$ and the corresponding linear system $A\mathbf{x} = \mathbf{b}$ has exactly 5 unknowns, then the system has a unique solution.

(C) Every homogeneous linear system of 5 equations in 5 unknowns has only the trivial solution.

(D) Every linear system of 5 equations in 5 unknowns has a unique solution.

A: A	B : B	C: C	D: D	E: none of A,B,C,D
If	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1 ¹ 1	in a second

23. If rank A = 3 and rank $[A | \mathbf{b}] = 4$, then the corresponding linear system $A\mathbf{x} = \mathbf{b}$ has

- (i) no solution
- (ii) exactly one solution
- (iii) exactly three or four solutions
- (iv) exactly 1 parameter in the solution.

A: (i)	B: (ii)	C: (iii)	D: (iv)	E: none of A,B,C,D
TX 71 • 1	1 . (.11. • . •	1 . 2		

24. Which one of the following is true?

(A) Every system of linear equations with 7 equations in 4 unknowns has infinitely many solutions.

(B) Every system of linear equations with 4 equations in 7 unknowns has infinitely many solutions.

(C) Every system of homogeneous linear equations with 4 equations in 7 unknowns has infinitely many solutions.

(D) Every system of homogeneous linear equations with 7 equations in 4 unknowns has infinitely many solutions.

	A: A	B: B	C: C	D: D	E: none	of A,B,C,D
	If $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ is	$\begin{bmatrix} 0\\1 \end{bmatrix}$ and B is	the row reduc	ed echelon	form of A , the	n the first row of B
	$\left[\begin{array}{ccc} A: \left[\begin{array}{ccc} 1 & 0 & 2 \end{array}\right]\right]$	B: [1 0 -	-1] C: [1	0 1] D:	$\left[\begin{array}{rrr}1 & 0 & \frac{1}{2}\end{array}\right]$	$E:\left[\begin{array}{cc}1&0&-\frac{1}{2}\end{array}\right]$
26.	Find det $\begin{bmatrix} 3 & 4\\ 2 & 1 \end{bmatrix}$].				
	A: 11	B : 5	C : 10	D:	-11	E: -5
27.	Find the 2,3-co	factor of the m	$ \begin{array}{c} 2 & 2 \\ 1 & 2 \\ 2 & 6 \end{array} $	$\begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}.$		
	A: 8	B: 2	C: 16	D: •	-8	E: -16

28.	Find det $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 1 \end{bmatrix}$			
	A: 4 B: 6		D: -6	E: -4
29.	Which one of the following is <u>false</u>		г э	
	(i) det $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 0$	(ii) det	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix} = 8$	
	(iii) $\det \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 1 \\ 4 & 1 & 2 \end{bmatrix} = 8$	(iv) det	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} = 8$	
	(v) det $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 4 \end{bmatrix} = 8$			
	A: (i) B: (ii)	C: (iii)	D: (iv)	E: (v)
30.	If det $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 5$, then det	$\begin{bmatrix} g & h & i \\ 3d & 3e & 3f \\ a & b & c \end{bmatrix} =$		
	A: -15 B: 15 C	: 5 D: -5	E: none o	f A,B,C,D
31.	If det $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 3$, then det	$\begin{bmatrix} a & d & g+2a \\ b & e & h+2b \\ c & f & i+2c \end{bmatrix} =$		
	A: -3 B: 3 C:	-6 D: 6	E: none of	A,B,C,D
32.	Find det $ \begin{bmatrix} $			
	A: 16 B: 15	C: 12	D: 32	E: 18
33.	Let A be a 3×3 matrix with det	A = 5. Find the val	lue of $det(2A)$.	
0.4	A: 250 B: 10	C: 25	D: 40	E: 20
34.	Let A and B be $n \times n$ matrices v are <u>false</u> ?	with $\det A = 5$ and	$\det B = 10.$ White	ch of the following
	(i) A and B are both invertibl (ii) $det(A^{-1}B) = 2$ (iii) $det(B^TA^T) = 50$ (iv) Every linear system $A\mathbf{x} = 1$		tion.	

A: none of them B: (i) only C: (ii) only D: (iii	i) only E: (iv) only
--	----------------------

35. For the linear system

36.

37.

38.

39.

40.

•	for the mean syst	ax -	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{l} = & k \\ = & l \\ = & m \end{array} $	
	det	$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & j \end{bmatrix} = 4$	-,	$\det \left[\begin{array}{ccc} k & b & c \\ l & e & f \\ m & h & j \end{array} \right] = 8$	3,
	\det	$\left[\begin{array}{ccc} a & k & c \\ d & l & f \\ g & m & j \end{array}\right] = 1$	2,	$\det \begin{bmatrix} a & b & k \\ d & e & l \\ g & h & m \end{bmatrix} = 2$	0.
	Then, in the solut	ion for this syster	m, the value of	z is	
	A: 2	B: 4	C: 8	D: 20	E: 5
	the value of c_{21} is			$\begin{bmatrix} -4 & 5 & -2 \\ -4 & 2 & 0 \\ 4 & -3 & 2 \end{bmatrix}$. If	
	$\begin{bmatrix} A: -4 \\ \text{If } A \text{ is a } 4 \times 4 \text{ mat} \end{bmatrix}$	B: −1	C: -16	D: 4	E: 1
•	If A is a 4×4 matrix	trix with $det(A) =$	= 3, then det(A	$\operatorname{dj} A) =$	
	3		C: 9	D: 27	E: 81
•	Let $\mathbf{u} = (2, 1, 3), \mathbf{v}$ a linear combinati			. Then \mathbf{w} can be wri	tten (uniquely) as
	A: 3	B: 4	C: 5	D: 6	E: 7
•	Let $\mathbf{u} = (1, 1, 1), \mathbf{v}$ and \mathbf{v} ?	r = (0, 2, 1). Whice	ch one of the fol	lowing is $\underline{\text{not}}$ a linear	combination of \mathbf{u}
	A: (0,0,0)	B: (1,1,1)	C: (1, 3, 2)	D: $(1, -1, 0)$	E: (2,4,2)
•	Which one of the	following sets of v	vectors is <u>linear</u>	ly independent?	
		A: {(1,0,0), (1, 2)	$(2,0), (2,3,5)\}$	B: {(1,1,1), (1,0,1),	$(2,2,2)$ }
				$D: \{(1,1,1), (1,1,0), ($	
		- ((-, -, -, -, -, -, -, -, -, -, -, -, -, -	, - , , (- , - , ° /)	((-, -, -,), (-, -,)),	(-, , -, , (-, °, -/)

41. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5}$ be vectors in \mathbb{R}^4 and let A be the 4×5 matrix with ith column $\mathbf{a}^i = \mathbf{v}_i$. Suppose that the row-reduced echelon form of A is

$$\left[\begin{array}{rrrrr} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

.

Which one of the following is <u>false</u>?

$A: \mathbf{v}_2 = 2\mathbf{v}_1$	B: $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.
C : { $\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4$ } is linearly independent.	$D: \mathbf{v}_4 = -\mathbf{v}_1 + 2\mathbf{v}_3$
E: $\{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_5\}$ is linearly independent.	

42. For what value of k is the set of vectors $\{(1,0,0), (1,2,8), (1,3,k)\}$ linearly dependent?

A: 8	B: 16	C: 12	D: 4	E: 24	
------	-------	-------	------	-------	--

43. Which one of the following sets of vectors is a subspace of \mathbb{R}^3 ?

A: $\{(0,0,0), (1,1,1)\}$
$B: \{(a, a+1, a) \mid a \text{ is a real number}\}\$
C: $\{(a, b, c) \mid a^2 + b^2 + c^2 = 16\}$
D: the set of all vectors in \mathbb{R}^3 except the vector $(1,0,1)$
$E: \{(a, a + b, b) \mid a, b \text{ are real numbers}\}\$
(

44. Which one of the following sets of vectors is <u>not</u> a subspace of \mathbb{R}^3 ?

A: $\{(0,0,0)\}$
$B: \{a(1,1,1) \mid a \ge -2\}$
$C:\mathbb{R}^3$
D: $\{(a, b, c) \mid 2a + 3b - 4c = 0\}$
E: the set of all linear combinations of the vectors $(1, 1, 1)$ and $(2, 2, 2)$.

45. Which one of the following sets of vectors is a spanning set for \mathbb{R}^3 ?

A: $\{(1,1,1),(1,0,1)\}$	B: $\{(1,1,1), (2,2,2), (3,3,3), (1,1,0)\}$
C: $\{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}$	D: $\{(1,0,0), (0,1,0), (1,1,0)\}$
$E:\{(0,0,0),(1,0,1),(1,1,0)\}$	

46. Let S be the subspace of \mathbb{R}^4 of all vectors of the form (x + y, x - y, x, y). Which one of the following is <u>false</u>?

A: The vector $(0, 0, 0, 0)$ is in S.
B: The vector $(2, 0, 1, 1)$ is in S.
C: $\{(1, 1, 1, 0), (1, -1, 0, 1)\}$ is a basis for S.
D: $\{(2,0,1,1), (1,-1,0,1)\}$ is a basis for S.
E : The dimension of S is 4.

47. Which one of the following is <u>false</u>?

A: $\{(0,0,0)\}$ is a subspace of \mathbb{R}^3 with dimension 1.		
: The dimension of \mathbb{R}^3 is 3.		
C: Every set of 4 vectors in \mathbb{R}^3 is linearly dependent.		
D: $\{(1,1,1)\}$ can be extended to a basis for \mathbb{R}^3 .		
E: The subspace of \mathbb{R}^3 spanned by the set $\{(0,0,0), (1,0,1), (0,1,0), (1,1,1)\}$ dimension 2.	ıas	

Let S be the subspace of \mathbb{R}^4 spanned by $\{(1, 0, 1, 0), (2, 1, 2, 1), (2, 0, 2, 0), (0, 1, 0, 1), (3, -2, 3, -2)\}$. A basis for S is

A: $\{(1, 0, 0, 0), (0, 1, 0, 0)\}$	$B: \{(2,0,0,0), (-2,1,0,0), (7,-2,0,0)\}$
C: { $(1, 0, 1, 0), (2, 1, 2, 1)$ }	D: $\{(2, 0, 2, 0), (0, 1, 0, 1), (3, -2, 3, -2)\}$
E none of the above	

49. Consider the homogeneous system of linear equations

The augmented matrix for the system has row-reduced echelon form

Γ	1	0	1	-2	0
	0	1	0	1	0
	0	0	0	$-2 \\ 1 \\ 0$	0

so a basis for the solution space of this system is

	A: $\{(1,0,1,-2), (0,1,0,1)\}$ B: $\{(1,0,1,0), (-2,1,0,1)\}$
	C: $\{(1,0,0,0), (0,1,0,0)\}$ D: $\{(-1,0,1,0), (2,-1,0,1)\}$
	E: none of the above
$\begin{bmatrix} 1 & 1 & -1 & 1 \end{bmatrix}$	
1 -1 -1 0	1 0 0 0
50. The matrix $1 - 1 - 1 0$	0 1 0 0
1 -1 -1 0	0 0 1 0
50. The matrix	
	$\begin{bmatrix} 1 & 0 & 0 & 1/2 & 0 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 & 0 & 0 & -1/2 & 0 \end{bmatrix}$
has row-reduced echelon form	$ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ -1/2 \ 1/2 \ . $
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}$ Therefore, a basis for \mathbb{R}^5 which includes the vectors $\mathbf{v}_1 = (1, 1, 1, 1, 1), \mathbf{v}_2 = (1, -1, -1, -1, -1)$ and $\mathbf{v}_3 = (-1, -1, -1, -1, 1)$ is

A: { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)$ }
$B: \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)\}$
C: { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, (1, 0, 0, 0, 0), (0, 0, 0, 0, 1)$ }
D: { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)$ }
E: none of the above.