1.	Mathematics 030 If $\mathbf{u} = (3, -1, 1, 2)$ and		Final Examination $2, -2, 4, 1)$, find 2		Wednes	sday, April 13	2005
			A: $(12, 4, 14, 5)$		B: (-	5, -1, 5, -4)	C: (6, 2, 4, 2)
			D: $(-36, -12, -2)$,	E: (0,	4, -10, 1)	
2.	If $\mathbf{u} = (3, -1, 1, 2)$ and	$d \mathbf{v} = \overline{2}$	(2, -2, 4, 1), find u	1 • V.			
	A: -5 B: 14	:	C: -84	D: 35		E: none of A,	B,C,D
0		4	C I	1. (a		

3. Which of the following systems of equations are linear?

(i)
$$\ln x - 2y + z = 0$$
$$x + 5y - z = 3$$

(ii)
$$x + \frac{y}{5} = 2$$
$$\frac{x}{3} + y = 7$$

(iii)
$$x + \frac{5}{y} = 2$$
$$\frac{3}{x} + y = 7$$

(iv)
$$x^{2} + xy - z^{2} = 1$$
$$x - y^{2} + z^{2} = 2$$

A: all of them	B: none of them	C: (i), (ii), (iii) only
D: (ii) and (iii) only	E: (ii) only	

4. Find the augmented matrix for the system

$$x_1 = x_2 - x_3$$
$$x_2 + 3 = x_4$$
$$x_3 + x_4 = 7$$

A:		$C: \left[\begin{array}{rrrr} 1 & 1 & 1 & 0 & \ 0 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 & 7 \end{array} \right]$
$\left[\begin{array}{cccc c} 1 & -1 & 1 & 0 & 0\\ 0 & 1 & 0 & -1 & -3\\ 0 & 0 & 1 & 1 & 7 \end{array} \right]$	$E: \left[\begin{array}{rrrr} 1 & -1 & 1 & 0 & & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & & 0 \end{array} \right]$	

5. Which of the following matrices are in row-reduced echelon form?

(i)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

(ii) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
(iii) $\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

	[1	2	0	0	
(iv)	0	0	1	0	
	0	0	0	1	
	L				-
	[1	0	0]	
(v)	0	2	0		
	0	0	3		
	-			_	
	0	1	0		
(vi)	1	0	0		
	0	0	1		
	-			-	
					Α

A: (ii) and (vi) only	B: (iii) and (v) only	C: (i) and (iv) only
D: (iv) only	E: (iii) only	

6. The given matrix is the augmented matrix for a linear system in the variables x_1, x_2 and x_3 . Solve the system.

Γ	1	-1	1	$\begin{vmatrix} -1 \\ 1 \\ -1 \end{vmatrix}$
	-1	1	-1	1
	1	-1	1	-1
-				_

A: no solution	B: $(-1, 1, -1)$	C: $(-1 - s + t, s, t)$
D: $(-1 + s - t, s, t)$	E: $(1 - s + t, s, t)$	
	1	· · · · · · · · · · · · · · · · · · ·

7. The given matrix is the augmented matrix for a linear system in the variables x_1, x_2 and x_3 . Solve the system.

1	1	-1	1
-2	1	-1	0
0	3	$-1 \\ -1 \\ -3$	3
			· _

A: no solution	B: $(1, 0, 3)$	C: $(0, t, t)$	D: $(0, -t, t)$	E: $(0, s, t)$
	+]	states for a linear		inline or and

8. The given matrix is the augmented matrix for a linear system in the variables x_1, x_2 and x_3 . Solve the system.

A: no solution	B: $(-1, 4, 1)$	C: $(-1, 5, 3)$	D: $(2, -1, 3)$	E: $(-1, s, t)$
Find the (2 1) entry	r of the new node	ad achalan famma	f	

9. Find the (3, 4)-entry of the row-reduced echelon form of

$$A = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 2 & 3 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

A: 0	B: 1	C: 5	D: 10	E : 15

10. The augmented matrix of a system of linear equations has row-reduced echelon form

 $\begin{bmatrix} 1 & -3 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & -2 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$. The solution is

D: $(-3s + t, s, t, t - 2)$ E: $(3s - t, s, 4 + 2t, t)$	t, t - 2)	C: $(3s - t, s, t, t)$	B: $(0, -3s, -2, t)$	A: (0, 4, 0)
			E: $(3s - t, s, 4 + 2t, t)$	D: $(-3s+t, s, t, t-2)$

- 11. For which value(s) of c does the system
 - -2z = 1xx + cy + 8z = 0x + y = 1

have a unique solution?

	A: $c = 5$ only	B: $c \neq 5$	C: $c = -5$ only	D: $c \neq -5$	E: no values
12.	For which value(s)	of c does the s	ystem		

x	—	2y	+	z	=	0
		y	—	z	=	0
2x	+	y	+	cz	=	0

have infinitely many solutions?

A: $c = -3$ only	B: $c \neq -3$	C: $c = 3$ only	D: $c \neq 3$	E: no values
For questions 13, 14,	15 and 16 let			

$$A = \begin{bmatrix} 2 & 5 & -2 \\ 3 & -1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 & 1 \\ -5 & 0 & 8 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 3 & 2 & 1 \\ 2 & 1 & -2 & 4 \\ -3 & 4 & -1 & 0 \end{bmatrix}$$

13. Find the (2, 1)-entry of A - 2B.

	A: 0	B: −1	C: 13	D: -11	E: undefined
14.	Find the $(3,1)$ -	entry of A^T .			
	A: -2	B: 1	C: 8	D: 15	E: undefined
15.	Find the $(2,3)$ -	entry of AC .			
	A: -4	B: 7	C: -3	D: 6	E: undefined
16.	Find the $(2, 4)$ -	entry of $B^T C$.			
	A: 0	B: 4	C: −5	D: 1	E: undefined
17.	Find A^2 where	A is the matrix	$\left[\begin{array}{rrr} -1 & -1 \\ -1 & -1 \end{array}\right].$		
	$A: \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ C: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad D: \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad E: \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$

	L	$\begin{bmatrix} 3 & -4 \\ 2 & 6 \end{bmatrix}$. If A	$A^{-1} = B =$	$= [b_{ij}], $ find	b_{22} .			
	A: $\frac{2}{10}$	B: $\frac{3}{10}$	C: $\frac{2}{1}$	$\frac{1}{0}$	D: $\frac{6}{10}$)	E: none o	of A,B,C,D
19. F	ind the valu	x = x for wh	ich $\begin{bmatrix} 3 & 1 \\ 6 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ x \end{bmatrix}$ has not) inve	rse.		
	A: 2	B: 3		C: 4		D: 5		E: 6
20. L	et $A = \begin{bmatrix} - \\ - \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & -2 \\ -1 & 1 & 2 \\ 1 & -2 & 0 \end{bmatrix}$. If A^{-1}	$=B=[b_{ij}]$], find	$b_{12}.$		
,	A : 0	B: 1		C : −1		D: 2		E: $\frac{1}{2}$
21. G	Siven $A =$	$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ a	and $A^{-1} =$	$= \begin{bmatrix} 2 & -1 \\ -2 & -3 \end{bmatrix}$	$ \begin{array}{c} -1 \\ 0 \\ 2 - \end{array} $	3 1 . In 1	the solutio	on to the system of
	near equation			L		_		
			ax + dx + dx	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$cz = f_{a}$	= -1		
			ax + qx +	- ey + - hy +	Jz = iz =	= $1=$ 2		
+1	he value of a	~ ia	5	U I				
_	$\frac{1}{A: 2}$	B: -3	[C: 4		D: 15	Г	E: -16
Ľ	2		Ι Γ 1	2 -1		D . 10		
22. F	ind the ran	k of the matri		$\begin{bmatrix} 2 & -1 \\ 3 & -2 \\ 1 & 0 \end{bmatrix}.$				
	A: 0	B: 1		C: 2		D: 3		E: 4
		f the following	-		, .	. 0	1 1	
(A)	Every nom solutions.	logeneous line	ear systen	n or 5 equ	lation	s in 9 ui	nknowns r	has infinitely many
(B)	Every hom	logeneous line	ear system	n of 9 equ	ation	s in 5 u	nknowns h	nas infinitely many
(C)	solutions. Every linea	ar system of 5	equation	s in 9 unk	nowns	s has infi	uitely man	v solutions
(D)		ar system of 9 ar system of 9						
·]	A: (A)	B: (B)	C: (C)	D:	(D)	E:	none of (A	A),(B),(C),(D)
			ank 3, the	en every lin	near s	ystem wi	th coefficie	ent matrix A which
na	as a solution A :	a 1-paramet	er familv	of solution	ns E	3: a 2-pa	rameter fa	amily of solutions
		a 3-paramet	Ŷ			-		amily of solutions

E: a 5-parameter family of solutions

25. Which one of the following is true?

- (A) If a linear system of 4 equations in 4 unknowns has no solutions, its coefficient matrix must be invertible.
- (B) If a linear system with 4 equations has no solutions, the rank of its coefficient matrix must be less than 4.
- (C) If a linear system with 4 equations has no solutions, the rank of its coefficient matrix must be equal to 4.
- (D) If a linear system with 4 equations has no solutions, the rank of its coefficient matrix must be greater than 4.

	A: (A) B:	(B) C: (C)	D: (D)	E: none of (A),	(B), (C), (D)
26.	Find det $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$].				
	A: -2	B: −1		C: 0	D: 1	E: 2
27.	Find det $\begin{bmatrix} 1 & \sqrt{2} \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \overline{2} & 1 \\ 2 \\ -2 \end{bmatrix}$				
	A: 6 E	B: $\sqrt{2} - 2$	C:	$\sqrt{2}+2$	D: −2	E: -6
28.	Let $A = \begin{bmatrix} 1 & 2\\ 1 & -1\\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find the	subm	natrix A_{23} .	_	
			C:	$\left[\begin{array}{rrr}1 & -1\\0 & 1\end{array}\right]$	$D: \left[\begin{array}{cc} 2 & 3 \\ -1 & 1 \end{array} \right]$	$E:\left[\begin{array}{cc}1&3\\0&1\end{array}\right]$
29.	Find det $\begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & -3 \\ 1 & 1 \\ 0 & 2 \\ -1 & 1 \end{bmatrix}.$				
	A: -4	B: 4	C:		D: 2	E : -1
30.	If det $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$	$] = 4 \text{ then det} \left[\right] $	$2a \\ 2b \\ 2c$	$\begin{bmatrix} d & g \\ e & h \\ f & i \end{bmatrix} =$		
	A: 4	B: 32	C: 8		D : -4	E: -32
31.	If det $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$	= 2 then det				
	A: 2	B: 4	C: -	-2	D: -4	E: 0

32.	Find det $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 2 \\ -1 & 2 & - \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 1 & 0 \\ 3 & 0 \\ -2 & 0 \end{bmatrix}.$				
33.	A: 14ELet A and B be 4 ×statements are true?(i) $det(AB) = de$ (ii) $det(2A) = 32$ (iii) $det(A^{-1}B) =$	t(BA)	C: 10 th det 2		D: 8 det $B = 4$. Which	E: 6 ch of the following
	A: none of them	B: all of the	m C	: (i) only	D: (ii) only	E: (iii) only
34.	Suppose A is an $n \times$	n matrix with	$\det(A)$	= 0. Which	n one of the follo	wing statements is
	(ii) $\operatorname{rank}(A) < n$ (iii) $\det(A^T) = 0$	$A\mathbf{x} = \mathbf{b}$ has a $\mathbf{x} = 0$ has an itible.	-		olutions.	
	A: (i) B:	(ii)	C: (iii))	D: (iv)	E: (v)
35.	Consider the system					·
				by = m $dy = n.$		
	Suppose det $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of y is			0	$\det \left[\begin{array}{cc} m & b \\ n & d \end{array} \right] =$	3. Then the value
	A: 2 B:	-2	C: 3		D: −3	E: -1
36.	Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. T	Then $\operatorname{Adj}(A) =$				
	A: $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ B:	$\begin{bmatrix} -\frac{1}{2} & -1 \\ -\frac{3}{2} & -2 \end{bmatrix}$	C: [_	$\begin{bmatrix} 4 & -2 \\ \cdot 3 & 1 \end{bmatrix}$	$D: \left[\begin{array}{cc} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{array} \right]$	$E:\left[\begin{array}{rrr}1&2\\3&4\end{array}\right]$
37.	If A is a 3×3 matrix	x with $det(A) =$	= 2, the	n det(Adj A	I) =	
		: 4	C: 8		D: 16	E: 0
38.	Suppose $\mathbf{u} = (3, 2, 4)$ Find the value of a .	$, \mathbf{v} = (0, 1, 2)$ as		(1,0,0). Th	nen u can be writt	ten as $\mathbf{u} = a\mathbf{v} + b\mathbf{w}$.
		: 3	C : 4		D: -3	E: 0
39.	Which of the followin	ng vectors is <u>not</u>	<u>z</u> a linea	r combinatio	on of $\mathbf{v} = (0, 1, 2)$	and $\mathbf{w} = (1, 0, 0)$?
40		(0, -1, -2)		0, 0, 0)	D: $(0, 1, 1)$	E: $(0, 1, 2)$
40.	For which value of k	a (1) + b a b a	DOD DOT	- la ses a fra a se a d		· · · · · · · · · · · · · · · · · · ·
		B: -1			f $(1, 1, 1)$ and $(2,$ D: 1	E: 2

7

41. Which one of the following sets of vectors spans \mathbb{R}^3 ?

41.	Which one of the following sets of vectors	$_3~{ m spans}~{\mathbb R}$	3?	
	A: $\{(1,1,1)\}$		B: {(1, 1	(1,1), (2,2,2), (3,3,3)
	C: $\{(1,0,0), (1,1,0)\}$		D: {(1,	$(0,0), (1,1,0), (1,1,1), (0,0,0)\}$
	E: $\{(0,0,0), (1,0,0), (0,0),$			
42.	Which one of the following sets of vectors	is linear	ly indep	endent?
	A: $\{(1, 1, 1), (1, 2, 3), (2, $			$B:\;\{(0,0,0),(1,0,0),(0,1,0)\}$
	C: $\{(1,2,1), (0,1,0), (1,$	3, -1), (7)	$7, 1, 3)\}$	D: $\{(1, 1, 0), (1, 1, 1)\}$
	E: $\{(1,2,0),(2,3,0),(-$	$1, 4, 0)\}$		
43.	Which one of the following sets of vectors	3 is linear	ly depen	ndent?
	A: $\{(1,2,1)\}$ B: $\{($	1, 0, 0), (0	$[0, 1, 0)\}$	$C:\{(1,0,1),(1,1,0),(2,1,1)\}$
	D: $\{(1,0,0), (1,1,0), (1,1,1)\}$ E: no	ne of A,I	B,C,D	
44.	Which one of the following sets of vectors	3 is a sub	space of	\mathbb{R}^3 ?
	A: $\{(a, b, c) \mid a + b + c = 0\}$ B: $\{(a, b, c) \mid a + b + c = 0\}$	$c) \mid abc =$	= 0}	C: $\{(a, b, c) \mid a + b + c = 1\}$
	D: $\{(a, b, c) \mid abc = 1\}$ E: $\{(a, b, c) \mid bc = 1\}$	c) $\mid a+b$	$+ c \ge 0$	}
45.	Which one of the following sets of vectors	3 is <u>not</u> a	subspac	\overline{ce} of \mathbb{R}^3 ?
	A: $\{(a, b, c) \mid a + b - c = 0\}$			
	B: $\{(1,0,0), (0,1,0), (0,0,1)\}$)}		
	C: $\{(a, b, c) \mid a = 0\}$			
	D: The set of all solutions of	of $A\mathbf{x} = 0$) , where	A is a 5×3 matrix.
	E: The set of all linear com	binations	of the v	rectors $(1, 1, -1)$ and $(2, 1, 0)$.
46.	Let S be a subspace of \mathbb{R}^4 with dim $S =$			
	$S = {\mathbf{x} \in \mathbb{R}^4 A\mathbf{x} = 0}.$ Which one of th		-	
		v		ntains exactly two vectors.
		$\operatorname{nk}(A) = 2$		
		is invertil		
		•		be extended to a basis of \mathbb{R}^4 .
17		s closed 1		
41.	Let A be a 6×7 matrix of rank 3. T	nen the	aimensio	on or the solution space of the

47. Let A be a 6×7 matrix of rank 3. Then the dimension of the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$ is

	A: 0		B : 1				C: 2	D: 3		E: 4	l		
48.	The matrix	2	$-2 \\ -4 \\ 2$	1			has row-reduced	echelon form		$-2 \\ 0 \\ 0$			
	Let S be the s A basis for S		ace of	f \mathbb{R}^3	spar	nned	by $\{(1, 2, -1), (-2)\}$	(2, -4, 2), (0, 1, 0)	$\bar{0}), (1$	1, 1, -	-1)	, (0, 0	$(0,1)^{-1}$.
		A	\: {(1)	, 2, -	-1),	(0, 1)	$,0),(0,0,1)\}$	B: $\{(1, 2, -1),$	(-2)	, -4,	2),	(0, 0)	$,1)\}$

A: $\{(1, 2, -1), (0, 1, 0), (0, 0, 1)\}$	B: { $(1, 2, -1), (-2, -4, 2), (0, 0, 1)$ }
C: { $(1, 2, -1), (0, 1, 0), (1, -1, -1)$ }	D: {(-2,0,2), (0,1,0), (1,-1,-1)}
E: none of the above	

49.	Therefore, a	$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ has row-reduced echelon form $\begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. basis for \mathbb{R}^4 which includes the vectors $\mathbf{u} = (1, 1, -1, 1)$ and $\mathbf{v} = (2, 1, -1, 1)$					
	is						
		A: { $\mathbf{u}, \mathbf{v}, (1,0,0,0), (0,1,0,0)$ } B: { $\mathbf{u}, \mathbf{v}, (1,0,0,0), (0,0,1,0)$ }					
		C: { $\mathbf{u}, \mathbf{v}, (0, 1, 0, 0), (0, 0, 1, 0)$ } D: { $\mathbf{u}, \mathbf{v}, (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)$ }					
		E: none of the above					
50.		mogeneous system of linear equations $A\mathbf{x} = 0$ has augmented matrix					
	1 0 1	1 0 0					
	$0 \ 1 \ -2$	1 0 0 . A basis for the solution space of this system is					
	$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$. A basis for the solution space of this system is						
	A: $\{(-1, 2, 1, 0, 0), (-1, -1, 0, 1, 0)\}$ B: $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$						
	C: $\{(1, -2, 0), (0, 0, 1)\}$ D: $\{(1, 0, 1, 1, 0), (0, 1, -2, 1, 0)\}$						
		$E:\;\{(1,0,0,0,0),(0,1,0,0,0),(0,0,0,0,1)\}$					