Mathematics $030 \quad$ Final Examination Wednesday, April 13, 2005

1. If $\mathbf{u}=(3,-1,1,2)$ and $\mathbf{v}=(2,-2,4,1)$, find $2 \mathbf{u}-3 \mathbf{v}$.

A: $(12,4,14,5)$	B: $(-5,-1,5,-4)$	$\mathrm{C}:(6,2,4,2)$			
$\mathrm{D}:(-36,-12,-24,-12)$	$\mathrm{E}:(0,4,-10,1)$				

2. If $\mathbf{u}=(3,-1,1,2)$ and $\mathbf{v}=(2,-2,4,1)$, find $\mathbf{u} \cdot \mathbf{v}$.

A: -5	B: 14	C: -84	D: 35	E: none of A,B,C,D

3. Which of the following systems of equations are linear?
(i) $\ln x-2 y+z=0$

$$
x+5 y-z=3
$$

(ii) $x+\frac{y}{5}=2$

$$
\frac{x}{3}+y=7
$$

(iii) $x+\frac{5}{y}=2$
$\frac{3}{x}+y=7$
(iv) $x^{2}+x y-z^{2}=1$
$x-y^{2}+z^{2}=2$

A: all of them	B: none of them	C: (i), (ii), (iii) only			
D: (ii) and (iii) only	E: (ii) only				

4. Find the augmented matrix for the system

$$
\begin{aligned}
x_{1} & =x_{2}-x_{3} \\
x_{2}+3 & =x_{4} \\
x_{3}+x_{4} & =7
\end{aligned}
$$

$\begin{array}{|l}\hline \text { A: }\left[\begin{array}{rrrr|r}0 & 1 & 2 & -1 & 0 \\ 2 & 3 & 4 & 0 & 0 \\ 3 & 4 & 7 & 0 & 0\end{array}\right] \\ \hline \text { D: }\left[\begin{array}{rrrr|r}1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -3 \\ 0 & 0 & 1 & 1 & 7\end{array}\right]\end{array}$ E: $\left[\begin{array}{rrrr|r}0 & 1 & 1 & -1 & 0 \\ 1 & 3 & 1 & 0 & 0 \\ 1 & 1 & 7 & 0 & 0\end{array}\right] \quad$ C: $\left.\left[\begin{array}{rrrr|r}1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 & 7\end{array}\right]\right]$.
5. Which of the following matrices are in row-reduced echelon form?
(i) $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$
(ii) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
(iii) $\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(iv) $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(v) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(vi) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

A: (ii) and (vi) only	B: (iii) and (v) only	C: (i) and (iv) only
D: (iv) only	E: (iii) only	

6. The given matrix is the augmented matrix for a linear system in the variables x_{1}, x_{2} and x_{3}. Solve the system.

$$
\left[\begin{array}{rrr|r}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

A: no solution	B: $(-1,1,-1)$	$\mathrm{C}:(-1-s+t, s, t)$
D: $(-1+s-t, s, t)$	$\mathrm{E}:(1-s+t, s, t)$	

7. The given matrix is the augmented matrix for a linear system in the variables x_{1}, x_{2} and x_{3}. Solve the system.

$$
\left[\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
-2 & 1 & -1 & 0 \\
0 & 3 & -3 & 3
\end{array}\right]
$$

A: no solution	$\mathrm{B}:(1,0,3)$	$\mathrm{C}:(0, t, t)$	$\mathrm{D}:(0,-t, t)$	$\mathrm{E}:(0, s, t)$

8. The given matrix is the augmented matrix for a linear system in the variables x_{1}, x_{2} and x_{3}. Solve the system.

$$
\left[\begin{array}{rrr|r}
1 & 0 & -1 & -1 \\
1 & 1 & 1 & 4 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

A: no solution	$\mathrm{B}:(-1,4,1)$	$\mathrm{C}:(-1,5,3)$	$\mathrm{D}:(2,-1,3)$	$\mathrm{E}:(-1, s, t)$

9. Find the $(3,4)$-entry of the row-reduced echelon form of

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 2 & 3 & 0 \\
2 & 1 & 0 & 1
\end{array}\right]
$$

$\mathrm{A}: 0$	$\mathrm{~B}: 1$	$\mathrm{C}: 5$	$\mathrm{D}: 10$	$\mathrm{E}: 15$

10. The augmented matrix of a system of linear equations has row-reduced echelon form
$\left[\begin{array}{rrrr|r}1 & -3 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The solution is

$\mathrm{A}:(0,4,0)$	$\mathrm{B}:(0,-3 s,-2, t)$	$\mathrm{C}:(3 s-t, s, t, t-2)$			
$\mathrm{D}:(-3 s+t, s, t, t-2)$	$\mathrm{E}:(3 s-t, s, 4+2 t, t)$				

11. For which value(s) of c does the system

$$
\begin{aligned}
x-2 z & =1 \\
x+c y+8 z & =0 \\
x+y & =1
\end{aligned}
$$

have a unique solution?

$\mathrm{A}: c=5$ only	$\mathrm{B}: c \neq 5$	$\mathrm{C}: c=-5$ only	$\mathrm{D}: c \neq-5$	$\mathrm{E}:$ no values

12. For which value(s) of c does the system

$$
\begin{aligned}
x-2 y+z & =0 \\
y-z & =0 \\
2 x+y+c z & =0
\end{aligned}
$$

have infinitely many solutions?

$\mathrm{A}: c=-3$ only	$\mathrm{B}: c \neq-3$	$\mathrm{C}: c=3$ only	$\mathrm{D}: c \neq 3$	$\mathrm{E}:$ no values

For questions $13,14,15$ and 16 let

$$
A=\left[\begin{array}{rrr}
2 & 5 & -2 \\
3 & -1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 3 & 1 \\
-5 & 0 & 8
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{rrrr}
0 & 3 & 2 & 1 \\
2 & 1 & -2 & 4 \\
-3 & 4 & -1 & 0
\end{array}\right]
$$

13. Find the $(2,1)$-entry of $A-2 B$.

A: 0	$\mathrm{~B}:-1$	$\mathrm{C}: 13$	$\mathrm{D}:-11$	$\mathrm{E}:$ undefined

14. Find the $(3,1)$-entry of A^{T}.

A: -2	B: 1	C: 8	D: 15	E: undefined

15. Find the (2,3)-entry of $A C$.

A: -4	B: 7	C: -3	D: 6	E: undefined

16. Find the $(2,4)$-entry of $B^{T} C$.

A: 0	B: 4	C: -5	D: 1	E: undefined

17. Find A^{2} where A is the matrix $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$.

| $\mathrm{A}:\left[\begin{array}{ll}-2 & -2 \\ -2 & -2\end{array}\right]$ | $\mathrm{B}:\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$ | $\mathrm{C}:\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ | $\mathrm{D}:\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ | $\mathrm{E}:\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

18. Let $A=\left[\begin{array}{rr}3 & -4 \\ -2 & 6\end{array}\right]$. If $A^{-1}=B=\left[b_{i j}\right]$, find b_{22}.

$\mathrm{A}: \frac{2}{10}$	B: $\frac{3}{10}$	$\mathrm{C}: \frac{4}{10}$	D: $\frac{6}{10}$	E: none of A,B,C,D

19. Find the value of x for which $\left[\begin{array}{ll}3 & 2 \\ 6 & x\end{array}\right]$ has no inverse.

A: 2	B: 3	C: 4	D: 5	E: 6
Let $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ -1 & 1 & 2 \\ 1 & -2 & 0\end{array}\right]$. If $A^{-1}=B=\left[b_{i j}\right]$, find b_{12}.				

A: 0	B: 1		C: -1	D: 2	E: $\frac{1}{2}$
Given $A=$	$\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$	and $A^{-1}=$	$=\left[\begin{array}{rrr}2 & -1 & 3 \\ -2 & 0 & 1 \\ -3 & 2 & -1\end{array}\right]$. In	to the system of

$$
\begin{aligned}
a x+b y+c z & =-1 \\
d x+e y+f z & =7 \\
g x+h y+i z & =2
\end{aligned}
$$

the value of z is

A: 0	B: 1	C: 2	D: 3	E: 4

23. Which one of the following is true?
(A) Every homogeneous linear system of 5 equations in 9 unknowns has infinitely many solutions.
(B) Every homogeneous linear system of 9 equations in 5 unknowns has infinitely many solutions.
(C) Every linear system of 5 equations in 9 unknowns has infinitely many solutions.
(D) Every linear system of 9 equations in 5 unknowns has infinitely many solutions.

A: (A)	B: (B)	C: (C)	D: (D)	E: none of (A), (B), (C), (D)

24. If A is a 6×8 matrix of rank 3 , then every linear system with coefficient matrix A which has a solution has

A: a 1-parameter family of solutions	B: a 2-parameter family of solutions			
C: a 3-parameter family of solutions	D: a 4-parameter family of solutions			
E: a 5-parameter family of solutions				

25. Which one of the following is true?
(A) If a linear system of 4 equations in 4 unknowns has no solutions, its coefficient matrix must be invertible.
(B) If a linear system with 4 equations has no solutions, the rank of its coefficient matrix must be less than 4 .
(C) If a linear system with 4 equations has no solutions, the rank of its coefficient matrix must be equal to 4 .
(D) If a linear system with 4 equations has no solutions, the rank of its coefficient matrix must be greater than 4 .

A: (A)	B: (B)	$\mathrm{C}:(\mathrm{C})$	$\mathrm{D}:(\mathrm{D})$	$\mathrm{E}:$ none of $(\mathrm{A}),(\mathrm{B}),(\mathrm{C}),(\mathrm{D})$

26. Find $\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$.

A: -2	B: -1	C: 0	D: 1	E: 2

A: 6	$\mathrm{~B}: \sqrt{2}-2$	$\mathrm{C}: \sqrt{2}+2$	$\mathrm{D}:-2$	$\mathrm{E}:-6$

28. Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & 1\end{array}\right]$. Find the submatrix A_{23}.

$\mathrm{A}:\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$	$\mathrm{B}:\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$	$\mathrm{C}:\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$	$\mathrm{D}:\left[\begin{array}{rr}2 & 3 \\ -1 & 1\end{array}\right]$	$\mathrm{E}:\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$

29. Find det $\left[\begin{array}{rrrr}0 & 1 & 1 & -3 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -1 & 1\end{array}\right]$.

30. If det $\left[\begin{array}{lll\|l\|l\|}\hline a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=4$ then $\operatorname{det}\left[\begin{array}{lll}2 a & d & g \\ 2 b & e & h \\ 2 c & f & i\end{array}\right]=$

A: 4	B: 32	C: 8	D: -4	E: -32

31. If $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=2$ then $\operatorname{det}\left[\begin{array}{ccc}a-d & b-e & c-f \\ 2 g & 2 h & 2 i \\ d & e & f\end{array}\right]=$

A: 2	B: 4	C: -2	D: -4	E: 0

32. Find $\operatorname{det}\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -1 & 2 & -2 & 0\end{array}\right]$.

A: 14	B: 12	C: 10	D: 8	$\mathrm{E}: 6$

33. Let A and B be 4×4 matrices with $\operatorname{det} A=2$ and $\operatorname{det} B=4$. Which of the following statements are true?
(i) $\operatorname{det}(A B)=\operatorname{det}(B A)$
(ii) $\operatorname{det}(2 A)=32$
(iii) $\operatorname{det}\left(A^{-1} B\right)=2$

A: none of them	B: all of them	C: (i) only	D: (ii) only	E: (iii) only

34. Suppose A is an $n \times n$ matrix with $\operatorname{det}(A)=0$. Which one of the following statements is false?
(i) Every system $A \mathbf{x}=\mathbf{b}$ has a unique solution.
(ii) $\operatorname{rank}(A)<n$
(iii) $\operatorname{det}\left(A^{T}\right)=0$
(iv) The system $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions.
(v) A is not invertible.

A: (i)	B: (ii)	C: (iii)	D: (iv)	E: (v)

35. Consider the system

$$
\begin{aligned}
a x+b y & =m \\
c x+d y & =n
\end{aligned}
$$

Suppose $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=-1$, $\operatorname{det}\left[\begin{array}{ll}a & m \\ c & n\end{array}\right]=-2$ and $\operatorname{det}\left[\begin{array}{cc}m & b \\ n & d\end{array}\right]=3$. Then the value of y is

A: 2		B: -2	C: 3	D: -3	E: -1
Let $A=$	$\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$. Then $\operatorname{Adj}(A)=$			

| $\mathrm{A}:\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$ | $\mathrm{B}:\left[\begin{array}{rr}-\frac{1}{2} & -1 \\ -\frac{3}{2} & -2\end{array}\right]$ | $\mathrm{C}:\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right]$ | $\mathrm{D}:\left[\begin{array}{rr}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$ | $\mathrm{E}:\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

37. If A is a 3×3 matrix with $\operatorname{det}(A)=2$, then $\operatorname{det}(\operatorname{Adj} A)=$

A: 2	B: 4	C: 8	D: 16	E: 0

38. Suppose $\mathbf{u}=(3,2,4), \mathbf{v}=(0,1,2)$ and $\mathbf{w}=(1,0,0)$. Then \mathbf{u} can be written as $\mathbf{u}=a \mathbf{v}+b \mathbf{w}$. Find the value of a.

A: 2	B: 3	C: 4	D: -3	E: 0

39. Which of the following vectors is not a linear combination of $\mathbf{v}=(0,1,2)$ and $\mathbf{w}=(1,0,0)$?

$\mathrm{A}:(7,1,2)$	$\mathrm{B}:(0,-1,-2)$	$\mathrm{C}:(0,0,0)$	$\mathrm{D}:(0,1,1)$	$\mathrm{E}:(0,1,2)$

40. For which value of k is $(0,1, k)$ a linear combination of $(1,1,1)$ and $(2,3,1)$?

$\mathrm{A}:-2$	$\mathrm{~B}:-1$	$\mathrm{C}: 0$	$\mathrm{D}: 1$	$\mathrm{E}: 2$

41. Which one of the following sets of vectors spans \mathbb{R}^{3} ?

A: $\{(1,1,1)\}$	B: $\{(1,1,1),(2,2,2),(3,3,3)\}$
C: $\{(1,0,0),(1,1,0)\}$	D: $\{(1,0,0),(1,1,0),(1,1,1),(0,0,0)\}$
E: $\{(0,0,0),(1,0,0),(0,1,0)\}$	

42. Which one of the following sets of vectors is linearly independent?

A: $\{(1,1,1),(1,2,3),(2,3,4)\}$	B: $\{(0,0,0),(1,0,0),(0,1,0)\}$	
C: $\{(1,2,1),(0,1,0),(1,3,-1),(7,1,3)\}$	D: $\{(1,1,0),(1,1,1)\}$	
E: $\{(1,2,0),(2,3,0),(-1,4,0)\}$		

43. Which one of the following sets of vectors is linearly dependent?

A: $\{(1,2,1)\}$	B: $\{(1,0,0),(0,1,0)\}$	$\mathrm{C}:\{(1,0,1),(1,1,0),(2,1,1)\}$			
D: $\{(1,0,0),(1,1,0),(1,1,1)\}$	E: none of A,B,C,D				

44. Which one of the following sets of vectors is a subspace of \mathbb{R}^{3} ?

A: $\{(a, b, c) \mid a+b+c=0\}$	B: $\{(a, b, c) \mid a b c=0\}$	$\mathrm{C}:\{(a, b, c) \mid a+b+c=1\}$			
$\mathrm{D}:\{(a, b, c) \mid a b c=1\}$	$\mathrm{E}:\{(a, b, c) \mid a+b+c \geq 0\}$				

45. Which one of the following sets of vectors is not a subspace of \mathbb{R}^{3} ?

| A: $\{(a, b, c) \mid a+b-c=0\}$ |
| :--- | :--- |
| B: $\{(1,0,0),(0,1,0),(0,0,1)\}$ |
| C: $\{(a, b, c) \mid a=0\}$ |
| D: The set of all solutions of $A \mathbf{x}=\mathbf{0}$, where A is a 5×3 matrix. |
| E: The set of all linear combinations of the vectors $(1,1,-1)$ and $(2,1,0)$. |

46. Let S be a subspace of \mathbb{R}^{4} with $\operatorname{dim} S=2$. Suppose A is a 4×4 matrix with $S=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid A \mathbf{x}=\mathbf{0}\right\}$. Which one of the following statements is false?

A:	Every basis of S contains exactly two vectors.
B: $\operatorname{rank}(A)=2$	
C: A is invertible.	
D:	Any basis of S can be extended to a basis of \mathbb{R}^{4}.
E: S is closed under addition.	

47. Let A be a 6×7 matrix of rank 3 . Then the dimension of the solution space of the homogeneous system $A \mathbf{x}=\mathbf{0}$ is

A: 0	B: 1	C: $2 \quad$ D: 3	E: 4
The matrix	$\left[\begin{array}{rrrrr}1 & -2 & 0 & 1 & 0 \\ 2 & -4 & 1 & 1 & 0 \\ -1 & 2 & 0 & -1 & 1\end{array}\right]$	has row-reduced echelon form	$\left[\begin{array}{rrrrr}1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

Let S be the subspace of \mathbb{R}^{3} spanned by $\{(1,2,-1),(-2,-4,2),(0,1,0),(1,1,-1),(0,0,1)\}$.
A basis for S is

A: $\{(1,2,-1),(0,1,0),(0,0,1)\}$	B: $\{(1,2,-1),(-2,-4,2),(0,0,1)\}$	
C: $\{(1,2,-1),(0,1,0),(1,-1,-1)\}$	D: $\{(-2,0,2),(0,1,0),(1,-1,-1)\}$	
E: none of the above		

49. The matrix $\left[\begin{array}{rrrrrr}1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$ has row-reduced echelon form $\left[\begin{array}{rrrrrr}1 & 0 & -1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$.

Therefore, a basis for \mathbb{R}^{4} which includes the vectors $\mathbf{u}=(1,1,-1,1)$ and $\mathbf{v}=(2,1,-1,1)$ is

A: $\{\mathbf{u}, \mathbf{v},(1,0,0,0),(0,1,0,0)\}$	B: $\{\mathbf{u}, \mathbf{v},(1,0,0,0),(0,0,1,0)\}$	
C: $\{\mathbf{u}, \mathbf{v},(0,1,0,0),(0,0,1,0)\}$	D: $\{\mathbf{u}, \mathbf{v},(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$	
E: none of the above		

50. A certain homogeneous system of linear equations $A \mathbf{x}=0$ has augmented matrix

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \text {. A basis for the solution space of this system is }
$$

A: $\{(-1,2,1,0,0),(-1,-1,0,1,0)\}$	B: $\{(1,0,0),(0,1,0),(0,0,1)\}$	
C: $\{(1,-2,0),(0,0,1)\}$	D: $\{(1,0,1,1,0),(0,1,-2,1,0)\}$	
E: $\{(1,0,0,0,0),(0,1,0,0,0),(0,0,0,0,1)\}$		

