
Answer ALL SIX questions in Section A and THREE questions from Sec-
tion B.

The numbers in square brackets in the right-hand margin indicate the provisional alloca-
tion of maximum marks per sub-section of a question.

You may assume the following:

elementary charge e = 1.6× 10−19 C
Planck’s constant h = 6.63× 10−34 Js

h̄ = h/2π
Boltzmann’s constant k = 1.38× 10−23 JK−1

Stefan-Boltzmann constant σ = 5.67× 10−8 Wm−2K−4

speed of light c = 3× 108 ms−1

mass of the electron me = 9.11× 10−31 kg
mass of the proton mp = 1.67× 10−27 kg∫ ∞

−∞
exp(−αx2)dx = (π/α)1/2

∫ ∞
−∞

x2 exp(−αx2)dx =
1

2α
(π/α)1/2

∫ ∞
−∞

x4 exp(−αx2)dx =
3

4α2
(π/α)1/2

SECTION A [Part marks]

1. (a) Explain what is meant by a heat bath and a particle bath. [1]

(b) Describe the meaning of microcanonical, canonical and grand canonical en-
sembles. [3]

(c) Provide an example of a physical system that can be treated by each ensemble.
[3]

2. (a) Briefly explain what is meant by a microstate and a macrostate of a system. [3]

(b) Define what is meant by an intensive and extensive state function and give
an example of each. [3]

3. (a) Write down an integral for the classical canonical partition function for an
ideal monatomic gas. [3]

(b) Show that the mean energy per particle of an ideal monatomic gas is 3kT/2,
where k is Boltzmann’s constant and T is the temperature. (You may need
to use the integrals in the rubric). [5]
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4. From energy conservation, it may be shown that a column of air in the earth’s
atmosphere satisfies the following condition:

T
dp

p
= −mg

k
dh

where T is temperature, p is the pressure, m is the molecular mass, g is the ac-
celeration due to gravity, k is Boltzmann’s constant and h is the height. Assume
that the atmosphere is a well mixed ideal monatomic gas, and that parcels of at-
mospheric air obey the law of adiabatic expansion pV γ=constant, where γ = 5/3,
as they rise and fall.

(a) What is the law of adiabatic expansion in terms of temperature and pressure? [2]

(b) Show that

(1− γ)
dp

p
+ γ

dT

T
= 0

[2]

(c) Hence derive an expression for temperature as a function of height. [2]

5. (a) Write down the Clausius-Clapeyron equation and define all the quantities
involved. [3]

(b) From the equation obtain an approximate expression for the saturated vapour
pressure of a liquid as a function of temperature. [4]

6. The Fermi energy of electrons in copper is 1.1× 10−18 J.

(a) Calculate the Fermi temperature. [1]

(b) If the electrons in copper were replaced by muons, with mass roughly 200
times the electron mass, calculate the Fermi temperature of muons in copper.
(You may assume that the Fermi temperature is inversely proportional to
particle mass). [2]

(c) Can Maxwell-Boltzmann statistics be used to describe electrons in copper at
room temperature? Can they be used to describe muons in copper, also at
room temperature? Justify your answers. [3]
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SECTION B

7. (a) Describe the meaning of the Second Law of Thermodynamics within classical
thermodynamics. You should include a discussion of reversible and irreversible
processes, and illustrate your understanding with examples. [9]

(b) Write down the fundamental relation of thermodynamics for a system defined
by functions of state E, S, T , p, V , and with fixed number of particles N . [2]

(c) Employing the Helmholtz free energy F = E−TS, derive the Maxwell relation(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

[3]

(d) The heat capacity at constant volume (CV ), isothermal compressibility (κT )
and thermal expansion coefficient at constant pressure (α) of the system are
given by

CV = T

(
∂S

∂T

)
V

κT = − 1

V

(
∂V

∂p

)
T

α =
1

V

(
∂V

∂T

)
p

Show that (
∂p

∂T

)
V

=
α

κT
[3]

You may use the identities(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

and (
∂x

∂y

)
z

=

[(
∂y

∂x

)
z

]−1

(e) Furthermore, show that (
∂T

∂V

)
S

= − Tα

CV κT
[3]
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8. (a) Define what is meant by the microstate multiplicity, or statistical weight,
Ω(E,α) of a system described by an energy E and internal unconstrained
parameter α. [4]

(b) Discuss the principle of equal a priori microstate probabilities. [3]

(c) Discuss Boltzmann’s interpretation of the entropy of a system, and explain
why an isolated system evolves, after a constraint on the parameter α is
removed, in such a way as to maximise its entropy. [5]

(d) Consider a system in weak thermal contact with a reservoir. The total energy
is Etot. The probability that the system has an energy E is

p(E) ∝ Ω(E)Ωr(Etot − E)

where the microstate multiplicities (statistical weights) of system and reservoir
are Ω(E) and Ωr(Etot − E) respectively. Show that for an infinite reservoir,

p(E) =
1

Z
Ω(E) exp(−βE)

and discuss the meaning of the parameter β. By what name is the normalising
factor Z usually known? [4]

(e) Sketch the typical shape of the probability distribution p(E) for a finite sys-
tem. What shape might it tend towards for a very large system? [4]
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9. The magnetic moment of an atom may take two orientations with respect to an
external magnetic field B: aligned with the field, with energy −αB, or against the
field with energy +αB. The partition function of an array of N atoms in a heat
bath at temperature T is given by

Z =
(

2 cosh
(
αB

kT

))N
(a) Show that the mean energy of the array is given by

〈E〉 = −NαB tanh
(
αB

kT

)
[4]

(b) Use the definition of the Helmholtz free energy to show that the entropy of
the array is given by

S = −NαB
T

tanh
(
αB

kT

)
+Nk ln

(
2 cosh

(
αB

kT

))
[3]

(c) Evaluate and comment on the entropy of the array for B = 0 and B →∞. [6]

(d) The standard deviation of the energy is given by σ = (〈E2〉 − 〈E〉2)1/2
.

Show that

σ =
αBN1/2

cosh(αB/(kT ))
[7]
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10. (a) Explain briefly what is meant by black-body radiation and why it can be
characterised by a single temperature. [6]

(b) What is the relationship between radiative energy flux and temperature? [2]

(c) You may assume that the mean number of photons occupying a state at energy
ε = h̄ω when the radiation has a temperature T is

〈N〉 =
1

exp(ε/kT )− 1

You may also assume that the number of available states in the angular fre-
quency range ω to ω + dω, in a cavity of volume V , is given by

g(ω)dω =
V ω2

c3π2
dω

where c is the speed of light.

Show that the average number of photons per unit volume in the cavity for a
temperature T is given by

n =
I

π2

(
kT

ch̄

)3

where I =
∫∞
0 dxx2(exp(x)− 1)−1 = 2.404. [7]

(d) Contrast the result in part (c) with the behaviour of the density of an ideal
molecular gas in a cavity of fixed volume as the temperature increases, and
explain the difference. Above what temperature, approximately, would the
photon density exceed the molecular density of air in a typical exam hall,
which is about 2× 1025 m−3? [5]
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11. (a) An analysis of the quantum mechanics of a single particle in a system defines a
set of single particle states. Consider a gas of non-interacting particles placed
in the system. How do fermions and bosons differ in the way they are allowed
to occupy the single particle states? Briefly explain why. [5]

(b) The grand partition function of a state at single particle energy ε, when the
gas has chemical potential µ and temperature T , is

ZG(µ, T ) =
∑
N

exp(−(E −Nµ)/kT )

where E = Nε is the energy when there are N particles occupying the state.

i. Show that the mean number of particles occupying the state is given by

〈N〉 = kT

(
∂ lnZG
∂µ

)
T

[3]

ii. If the particles are fermions, show that

ZG = 1 + exp(−(ε− µ)/kT )

and hence that

〈N〉 =
1

exp((ε− µ)/kT ) + 1
[5]

(c) For electrons, the density of single particle states is given by

g(ε) ∝ ε1/2

Show that at T = 0 the mean energy per particle in the electron gas is 3µ/5. [7]

PHAS2228/2009 END OF PAPER

7



Answer ALL SIX questions in Section A and THREE questions from Sec-
tion B.

The numbers in square brackets in the right-hand margin indicate the provisional alloca-
tion of maximum marks per sub-section of a question.

You may assume the following:

elementary charge e = 1.6× 10−19 C
Planck’s constant h = 6.63× 10−34 Js

h̄ = h/2π
Boltzmann’s constant k = 1.38× 10−23 JK−1

Stefan-Boltzmann constant σ = 5.67× 10−8 Wm−2K−4

speed of light c = 3× 108 ms−1

mass of the electron me = 9.11× 10−31 kg
mass of the proton mp = 1.67× 10−27 kg∫ ∞

−∞
exp(−αx2)dx = (π/α)1/2

SECTION A [Part marks]

1. (a) State the Second Law of thermodynamics. [2]

(b) An ideal gas undergoes free expansion into a larger volume. After equilibrium
is reestablished, has its entropy gone up, down or stayed the same? Explain
your answer. [2]

(c) The temperature of an ideal gas is rapidly reduced at constant volume. After
equilibrium is reestablished, has its entropy gone up, down, or stayed the
same? Explain your answer. [2]

2. (a) State the fundamental relation of thermodynamics, naming all quantities in-
volved. [3]

(b) Define the Helmholtz free energy, and describe the circumstances where it
might be used to determine an equilibrium state of a system. [3]

3. (a) What physical property determines whether a particle is a fermion or a boson?
What values of this property are distinctive for bosons? [2]

(b) State an important symmetry property that must be satisfied by the wave-
function of a system of many bosons. What is the corresponding property
that must be possessed by the wavefunction of a system of many fermions? [2]

(c) What distinctive phenomenon does a gas of bosons exhibit at low tempera-
tures? Name a physical effect that is thought to be due to this phenomenon. [2]
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4. (a) State the relationship between microstate multiplicity and Boltzmann entropy.
[2]

(b) State the relationship between equilibrium microstate probabilities and Gibbs
entropy. [2]

(c) Define the canonical partition function of a system and state how it is related
to a particular thermodynamic potential. [2]

5. (a) Explain what is meant by a heat and particle bath at temperature T and
chemical potential µ. [2]

(b) Write down the probability P (E,N) that a system in contact with such a heat
and particle bath, and with a grand canonical partition function ZG, might
be found in a macrostate with particle number N , energy E and microstate
multiplicity Ω(N,E). For a large system, sketch the form of P (E,N) you
would expect it to take as a function of N for constant E. [3]

(c) A system can take two phases, liquid or solid. Above the melting temperature,
which phase has the lower chemical potential, and why? At which temperature
do both phases have the same chemical potential? [3]

6. A classical ideal monatomic gas has a heat capacity at constant volume equal to
3k/2 per particle. The electrons in a metal at room temperature form a gas, at
least to a first approximation, but have a heat capacity per particle much less than
this value.

(a) How might you describe the condition of this electron gas? [1]

(b) Sketch the Fermi-Dirac distribution fFD(E) for such an electron gas and in-
dicate the position of the chemical potential of the gas on the energy axis. [2]

(c) Explain what fFD represents. [1]

(d) Define what is meant by the Fermi energy. [1]

(e) Compare the Fermi temperature of this gas with room temperature. [1]

(f) Why is the heat capacity of the electron gas suppressed? [2]
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SECTION B

7. (a) Describe what is meant by a reversible thermodynamic process. [2]

(b) State the relationship between the entropy change of a system and the heat
transferred to it from a heat bath at temperature T , for a reversible, and for
an irreversible process. [2]

(c) Show that for a reversible isothermal compression, the work done on a system
is equal to the change in Helmholtz free energy of the system. [2]

(d) Establish whether the work done on a system during an irreversible isothermal
compression is greater than, less than, or equal to the change in Helmholtz
free energy of the system. [2]

(e) An evacuated container with volume V and at a temperature T contains black
body radiation with an energy density equal to 4σT 4/c.

i. Determine the heat capacity, at constant volume, of the radiation. [2]

ii. Hence show that the entropy of the radiation is given by

S(T, V ) =
16σV T 3

3c

[3]

iii. The container is placed in thermal contact with a heat bath at temper-
ature Tr. If the heat capacity of the cavity material itself is negligible,
show that the overall change in entropy of the universe after the system
and heat bath have reached thermal equilibrium is

∆Stot =
4σV T 3

r

3c

(
1− t3 (4− 3t)

)
where t = T/Tr. [5]

iv. Comment on the sign of ∆Stot as a function of t. [2]
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8. (a) The classical canonical partition function of a one-dimensional harmonic os-
cillator of mass m and spring constant κ may be written

Z =
1

h0

∫ ∞
−∞

∫ ∞
−∞

dx dp exp

(
− p2

2mkT

)
exp

(
− κx

2

2kT

)

where h0 is a constant.

i. Evaluate Z and hence determine the mean energy 〈E〉 of the oscillator
when in equilibrium with a heat bath at temperature T . [4]

ii. Using the general formula S = 1
T
〈E〉 + k lnZ, show that the entropy of

such an oscillator is given by

S = k

(
1 + ln

(
2πkT

h0ω

))

where ω = (κ/m)1/2 is the natural angular frequency of the oscillator. [2]

iii. What is the Third Law of thermodynamics? Demonstrate that the ex-
pression given above for the oscillator entropy does not satisfy this Law
and explain physically why this is so. [3]

(b) The quantum canonical partition function of a 1-d harmonic oscillator is

Z =
1

2 sinh(x/2)

where x = h̄ω/kT .

i. Evaluate the mean energy of the quantum oscillator when in equilibrium
with a heat bath at temperature T . [3]

ii. By considering the limiting form of the quantum partition function for
large T , and comparing it with the expression found in part a(i), identify
the constant h0 employed in the classical treatment. [You may assume
that sinh z ≈ z for small z]. [2]

(c) The spring constant is very slowly changed from κ to 2κ whilst the oscillator
remains in thermal equilibrium with the heat bath.

i. Using the classical results derived in part (a), calculate the change in
entropy of the oscillator. [2]

ii. Deduce the heat delivered to the heat bath during the process. [2]

iii. What is the work done on the oscillator during the process? [2]
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9. (a) What is a microcanonical statistical ensemble? [2]

(b) What is the principle of equal a priori probabilities? [2]

(c) Consider a set of atoms in a system. Under what circumstances might the
atoms be distinguishable and when might they be indistinguishable? Why
does this matter in statistical thermodynamics? [4]

(d) A system consists of N identical atoms, each one trapped in its own spatially
separated harmonic potential. Neglecting zero point energy, the oscillatory
energy of each atom is an integer number (including zero) of quanta of energy
h̄ω, where ω is the common classical angular frequency of oscillation.

Show that the microstate multiplicity, when the total energy of the system is
E = Qh̄ω, is given by

Ω(N,Q) =
(N − 1 +Q)!

(N − 1)!Q!

[7]

(e) Now consider N atoms placed in a single harmonic potential. If N = 2 and
Q = 4, identify the available microstates, and determine the factor by which
the multiplicity given in part (d) has to be corrected. [5]
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10. (a) The grand partition function ZG(µ, T ) of a system in equilibrium with a heat
and particle bath, or reservoir, at temperature T and chemical potential µ, is
given by

ZG(µ, T ) =
∑
N

∑
i

exp

(
−(Ei − µN)

kT

)
where Ei is the energy of microstate i. Show that the mean number of particles
in the system is given by

〈N〉 = kT

(
∂ lnZG

∂µ

)
T

[4]

(b) The grand partition function of a gas of non-interacting bosons in equilibrium
with such a reservoir may be written

lnZG =
∫ ∞
0

g(E) lnZE
GdE

where the grand partition function ZE
G of a single particle state at energy E

is given by
ZE

G = (1− exp((µ− E)/kT ))−1

and where, according to a certain model, the density of single particle states
in energy is given by

g(E) =
(2s+ 1)V

(2π)2

(
2m

h̄2

)3/2

E1/2

where s is the spin and m the mass of the boson, and V is the size of the box
containing the gas.

i. Evaluate the mean number of particles 〈N〉E in a single particle state at
energy E ≥ 0 and thereby demonstrate that the chemical potential of the
reservoir, and hence of the gas, cannot be positive. [5]

ii. Derive an expression for the mean number of particles in the entire gas,
in terms of an integral over energy. [3]

iii. Provide an argument that the density of the gas cannot, according to this
model, exceed a certain multiple (which need not be determined) of the
quantum concentration defined by

nq =

(
2πmkT

h2

)3/2

[5]

iv. What aspect of the model must be corrected in order to accommodate
gas densities above this apparent limit? [3]
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11. According to the non-relativistic quantum mechanics of a particle of mass m in a
cubic box of volume V = L3, the single particle energy levels are given by

Ek =
h̄2k2

2m

where k is the magnitude of the wavevector k = (kx, ky, kz), and where the com-
ponents of k are quantised as kx = πnx/L etc, with nx = 0, 1, 2, . . .

(a) Show that the density in k-space of the single particle states that are available
to electrons is given by

ρ(k) =
V k2

π2

[6]

(b) Hence show that the total kinetic energy of a non-relativistic gas ofN electrons
at T = 0 is

E =
V

5π2

(
2me

h̄2

)3/2

E
5/2
F

where EF is the Fermi energy. [5]

(c) Furthermore, show that EF is given by

EF =
h̄2

2me

(
3π2N

V

)2/3

[3]

(d) Show that the electron density n = N/V at which the mean kinetic energy of
an electron in the gas is equal to its rest mass energy, is given by

n =
1

3π2

(
10

3

)3/2 (mec

h̄

)3

What is the significance of this density with regard to the stability of white
dwarf stars? [6]
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Answer ALL SIX questions in Section A and THREE questions from Sec-
tion B.

The numbers in square brackets in the right-hand margin indicate the provisional alloca-
tion of maximum marks per sub-section of a question.

You may assume the following:

elementary charge e = 1.6× 10−19 C
Planck’s constant h = 6.63× 10−34 Js

h̄ = h/2π
Boltzmann’s constant k = 1.38× 10−23 JK−1

Stefan-Boltzmann constant σ = 5.67× 10−8 Wm−2K−4

speed of light c = 3× 108 ms−1

mass of the electron me = 9.11× 10−31 kg
mass of the neutron mn = 1.67× 10−27 kg
Gravitational constant G = 6.67× 10−11 m3kg−1s−1

Mass of the sun = 2× 1030 kg

∞∑
n=0

rn =
1

1− r

∫ ∞
0

x3dx

ex − 1
=
π4

15

SECTION A [Part marks]

1. (a) State the four laws of thermodynamics. [4]

(b) Which of the following is not an increment in a thermodynamic state variable?

dT, dQ, dE, dp, dµ

Define what this increment actually represents. [2]

2. (a) Define what is meant by a microstate and a macrostate, and the meaning of
the microstate multiplicity. [3]

(b) Explain what is meant by the principle of equal a priori probabilities. [2]

(c) Explain, according to Boltzmann’s ideas, and using the concept of microstate
multiplicity, why the entropy of a gas increases during free expansion from
volume V into a larger volume V ′. [3]
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3. (a) Write down an expression for the canonical partition function Z and define
its relationship to the Helmholtz free energy. [3]

(b) Derive the following expression for the mean energy of a system in the canon-
ical ensemble:

〈E〉 = −∂ lnZ(β)

∂β

where β = 1/(kT ) [3]

4. (a) Write down expressions for the mean occupation number of a quantum state at
energy E when in equilibrium with a heat and particle bath at temperature T
and chemical potential µ, according to (i) Fermi-Dirac and (ii) Bose-Einstein
statistics. [2]

(b) Sketch each mean occupation number as a function of E − µ. [4]

(c) Which expression is appropriate for occupation of the state by electrons, and
why? [1]

5. The energy of photons of black body radiation, per unit range in angular frequency
ω, at temperature T in a volume V , may be written

V h̄

c3π2

ω3

(exp(h̄ω/kT )− 1)

(a) Show that the total energy of the entire spectrum of black body radiation,
per unit volume, is given by

4σ

c
T 4

and deduce an expression for the Stefan-Boltzmann constant σ in terms of
elementary constants. [4]

(b) What role does chemical potential play with regard to thermodynamic systems
able to exchange particles? [2]

(c) Why is the chemical potential of black body radiation equal to zero? [1]

6. (a) Write down an integral representation of the canonical partition function,
valid for a classical one-particle system at temperature T , and characterised
by the Hamiltonian H(p, q), where p is the particle momentum and q is its
position. [3]

(b) The classical canonical partition function for N ideal gas particles takes the
form

ZN =
1

N !
ZN

1

where Z1 is the partition function for a single particle. Why is the factor of
1/N ! present? [3]
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SECTION B

7. (a) The fundamental relation of thermodynamics, for a system with constant
number of particles, may be written

dS =
1

T
dE +

p

T
dV

Show that this can be recast in the form

dS =

(
1

T

(
∂E

∂V

)
T

+
p

T

)
dV +

1

T

(
∂E

∂T

)
V

dT

and derive expressions for(
∂S

∂V

)
T

and

(
∂S

∂T

)
V

[4]

(b) Hence show that (
∂E

∂V

)
T

= T 2

(
∂(p/T )

∂T

)
V

[6]

(c) Use this relationship to demonstrate that the energy of an ideal classical gas
does not change when it is expanded or compressed at constant temperature. [2]

(d) The Van der Waals equation of state, with positive parameters a and b, is(
p+ a

(
N

V

)2
)(

V − bN
V

)
= NkT

Use the above result for (∂E/∂V )T to show that the energy of a Van der Waals
gas does change upon isothermal expansion. Does it increase or decrease?
Argue physically in support of the direction of change that you deduce. [6]

(e) Calculate (∂S/∂V )T for the Van der Waals gas. [2]
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8. (a) Describe the meaning of the equation

dS =
dQ

Tr
+ dSi

What are the properties of dSi and under what circumstances might it be
equal to zero? [5]

(b) The energy of a monatomic ideal classical gas is E = 3NkT/2 and its entropy
is given by

S(T, V,N) = Nk ln

(
(kT )3/2

ĉN/V

)
where ĉ is a constant. Use these expressions to demonstrate, graphically
if possible, that the entropy change of the universe, associated with a non-
quasistatic heat transfer process between the gas and a heat bath at a fixed
temperature Tr, cannot be negative, irrespective of the initial temperature T0
of the gas. [9]

(c) The relevant part of the availability A of a monatomic ideal classical gas
coupled to a heat and volume bath at temperature Tr and pressure pr is given
by E − TrS + prV .

i. Show that

A =
3

2
Nk

(
T − Tr ln

(
kT

(ĉN/V )2/3

))
+ prV

[2]

ii. A vessel of initial volume V0 holds N particles of a monatomic ideal clas-
sical gas with initial pressure p0 and temperature T0. Thermal contact
is established between the vessel and a heat and volume bath at tem-
perature Tr and pressure pr. By an analysis of the dependence of the
availability on the unconstrained system volume V , show that the final
equilibrium volume of the gas is given by NkTr/pr. [4]
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9. (a) Consider a system of three indistinguishable bosons occupying a system where
there are three energy levels: zero, ε and 2ε. Identify all 10 microstates of
the system in terms of the population in each level. Evaluate the number of
microstates with energies zero, ε, 2ε, 3ε, 4ε, 5ε, and 6ε. [5]

(b) Calculate the canonical partition function of the system at temperature T in
terms of x = exp(−ε/kT ). [2]

(c) Derive an expression for the mean energy of the system when in thermal
contact with a heat bath at a temperature T . What is the mean energy at
T = 0, T = ε/k and as T →∞? [6]

(d) The system is given an energy 2ε and then thermally isolated. Determine the
mean and standard deviation of the boson population in the ground state. [4]

(e) State the relationship between temperature and a derivative of entropy. [1]

(f) If the system were given an energy greater than 3ε and again isolated, what
can be said about the temperature of the system? [2]
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10. A molecule consists of two atoms bound together by a harmonic potential such
that the allowed vibrational energy states are given by

Ev(n) =
(
n+

1

2

)
h̄ω

where n is a non-negative integer and ω is the fundamental vibrational angular
frequency.

(a) Considering just the vibrational contributions to its energy, show that the
canonical partition function of the molecule in a heat bath at temperature T
is given by

Z =
1

2 sinh(h̄ω/(2kT ))
[3]

(b) Calculate the mean vibrational energy of the molecule. [4]

(c) Show that the vibrations make a contribution to the heat capacity of the
molecule in the form

Cv =
h̄2ω2

4kT 2 sinh2(h̄ω/2kT )
[5]

(d) The rotational energy of the molecule is quantised according to

Er(`) = `(`+ 1)Θ

where Θ is a constant, and with ` = 0, 1, 2 etc. The number of rotational
quantum states at a given value of ` is 2`+ 1.

i. Write down the rotational canonical partition function of the molecule as
a sum over `. [2]

ii. Write down the probability that the molecule might be found with a
particular value of `. [2]

iii. At high temperatures it is possible to regard the general term in the sum
as a function of a continuous variable `. Show that the most probable
value of ` in these circumstances is

`mode =
1

2

(2kT

Θ

)1/2

− 1


[4]
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11. (a) A fermion gas well below its Fermi temperature is degenerate. Define the
meaning of fermion, Fermi temperature (and the related Fermi energy) and
degenerate. [6]

(b) The pressure of a non-relativistic degenerate fermion gas is given by

p =
1

3π2

(
2m

h̄2

)3/2 2E
5/2
F

5

where the Fermi energy is given by

EF =
h̄2

2m

(
3π2n

)2/3
and wherem is the mass of the fermion and n is the fermion density in particles
per unit volume.

i. Describe how a star, near the end of its life and short of material suitable
for nuclear fusion, can stabilise itself against gravitational collapse. You
should discuss at least two long-term stabilised modes, and the nature of
the core of the star in each case. [9]

ii. An astronomical object is discovered with an apparent radius of 2.5 km.
Assuming it is a stabilised, partially collapsed star with a mass of that of
the sun, and that the gravity-induced pressure at the centre of a sphere
of mass M and radius r is approximately 3GM2/(4πr4), deduce the ap-
proximate mass of the fermions within the star, and their likely nature,
assuming there is only one species present. [5]
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Answer ALL SIX questions in Section A and THREE questions from Sec-
tion B.

The numbers in square brackets in the right-hand margin indicate the provisional alloca-
tion of maximum marks per sub-section of a question.

You may assume the following:

elementary charge e = 1.6× 10−19 C
Planck’s constant h = 6.63× 10−34 Js

h̄ = h/2π
Boltzmann’s constant k = 1.38× 10−23 JK−1

Stefan-Boltzmann constant σ = 5.67× 10−8 Wm−2K−4

speed of light c = 3× 108 ms−1

mass of the electron me = 9.11× 10−31 kg
mass of the neutron mn = 1.67× 10−27 kg
Gravitational constant G = 6.67× 10−11 m3kg−1s−2

Mass of the sun = 2× 1030 kg

SECTION A [Part marks]

1. (a) Write down the Clausius and Kelvin statements of the Second Law of ther-
modynamics. [4]

(b) Write down Boltzmann’s expression for thermodynamic entropy. [1]

(c) Explain how Boltzmann’s expression accounts for an increase in the entropy
of an isolated system when a constraint upon it is released. [2]

2. (a) Write down an expression for the Gibbs entropy of a system. [2]

(b) Write down the probability associated with a microstate in a microcanonical
ensemble of Ω microstates. [1]

(c) Calculate the Gibbs entropy of a system described by such a microcanonical
ensemble. [3]
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3. (a) What is meant by the thermodynamic limit? What statistical property of a
system exposed to a heat bath is expected to vanish in this limit? [3]

(b) Give an example of a thermodynamic potential and describe the specific cir-
cumstances under which it might be used to identify an equilibrium state of
a system. [3]

4. (a) Briefly describe what is meant by a degenerate Fermi gas. [3]

(b) Briefly describe what is meant by a Bose-Einstein condensate. [3]

(c) Would you expect to observe these states of matter when the particle density
lies above, below or precisely at the quantum concentration? [1]

5. (a) Write down the general form of a Boltzmann factor. [2]

(b) Specify the statistical ensemble where it is employed and the physical circum-
stances that the ensemble is designed to represent. [2]

(c) Write down the form of the Maxwell-Boltzmann distribution of particle speed
v in a three dimensional gas of atoms each of mass m, disregarding the nor-
malisation constant. [2]

6. (a) Write down the fundamental relation of thermodynamics. [2]

(b) Show that [3]

p = −
(
∂F

∂V

)
N,T

(c) Using the Helmholtz free energy derive the Maxwell relation [3](
∂p

∂T

)
N,V

=

(
∂S

∂V

)
N,T
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SECTION B

7. (a) Assuming that the relevant density of states is

g(E) =
V

2π2

(
2me

h̄2

)3/2

E1/2

show that the Fermi energy of a gas of N electrons confined to a volume V
at zero temperature is given by

EF =
h̄2

2me

(
3π2N/V

)2/3
and that the mean energy per electron in such conditions is 3EF/5. [6]

(b) The relationship between the mean energy E and the entropy S of a low
temperature electron gas is

E =
3

5
NEF

(
1 +

5

3

(
S

πNk

)2
)

i. Show that the relationship between temperature and entropy for this
system is given by [2]

T =
2EFS

(πk)2N

ii. State the third law of thermodynamics and determine whether the gas
violates it. [2]

iii. Express E and S in terms of T to show that the Helmholtz free energy is
given by [4]

F =
3

5
NEF −

N(πkT )2

4EF

iv. Hence show that the pressure of the gas is

p =
2NkTF

5V

(
1 +

5π2

12

(
T

TF

)2
)

where the Fermi temperature is given by TF = EF/k. [4]

(c) In a particular metal the Fermi temperature is 57000 K. Calculate the entropy
per electron at T = 300 K. [2]
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8. The chemical potential of a classical monatomic ideal gas of N particles occupying
a volume V is given by

µ = kT ln
(
N

V
λ3th

)
where the thermal de Broglie wavelength λth of the gas is a function of temperature
T .

(a) Consider two classical monatomic ideal gases, one coloured red and one coloured
green. A container is divided in half by a partition that is permeable to red
gas particles only. Initially, the right hand subvolume of the container holds
red gas at a certain pressure, whilst the left hand subvolume holds red and
green gas in equal proportions such that the total pressure on each side of the
partition is the same. The container is in thermal contact with a heat bath
at temperature T .

i. Determine the chemical potential of red gas in the two subvolumes and
deduce, giving your reasons, whether the partition, if it is free to move,
is likely to slide to the left, to the right, or remain in place. [6]

ii. A colour-blind professor observes the system and believes a law of ther-
modynamics is being violated: which one and why? [4]

(b) Show that an increment in the Gibbs free energy G = E − TS + pV satisfies
the relation [2]

dG = −SdT + V dp+ µdN

(c) Assuming G may also be written as µN , derive the Gibbs-Duhem relation

dµ = −sdT + vdp

where s = S/N and v = V/N . [3]

(d) Explaining your reasoning, deduce the Clausius-Clapeyron equation for the
slope of a coexistence curve on a p-T phase diagram. [5]
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9. A system consists of two levels with energies 0 and ε, respectively.

(a) Calculate the canonical partition function Z1 of the system when it accom-
modates one particle and is in contact with a heat bath at temperature T .
Express your result in terms of the parameter y = exp(−ε/kT ). [2]

(b) Calculate the mean energy of the particle. [3]

(c) The Helmholtz free energy of the particle is given by F = −kT ln(1 + y). The
energy difference ε depends on an externally controlled field x according to
ε = ε0 + αx where ε0 and α are positive constants. Derive the coefficient X
that appears in the expression [3]

dF = −SdT +Xdx

(d) Derive the entropy of the system and deduce its limiting value as x→∞. [6]

(e) Calculate the canonical partition function Z2 when the system accommodates
two indistinguishable fermions, if each level can occupy one particle at most. [2]

(f) The system is exposed to an environment that is a source of indistinguishable
fermions at a chemical potential µ, and heat at a temperature T . The grand
canonical partition function is given by a sum

ZG(µ, T ) =
∑
N

exp(µN/kT )ZN

over an appropriate range of the number of particles in the system, N .

Determine the mean number of particles in the system 〈N〉, in terms of y and
w = exp(µ/kT ). [4]
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10. The microstate multiplicity of a macrostate of N quantum harmonic oscillators,
labelled by the set of populations {nk}≡{n0, n1, · · · , nQ} where nk is the number
of oscillators that possess k quanta, is given by

Ω(N,Q, {nk}) =
N !

n0! · · ·nQ!

such that
Q∑

k=0

nk = N and
Q∑

k=0

knk = Q.

where Q is the fixed total number of quanta in the system.

(a) For the case N = 3 and Q = 4, identify the four macrostates and their
microstate multiplicities. [6]

(b) A measurement is made of the ‘spikiness’ of the oscillator system, defined
as the difference in number of quanta possessed by the highest occupied and
lowest occupied oscillator at a given instant of time.

i. Show that the four population macrostates labelled by the {nk} are each
characterised by a unique spikiness value, and list those values. [4]

ii. Determine the probability distribution of the system over the macrostates,
assuming that the statistics are governed by the principle of equal a priori
probabilities. [2]

(c) For a system where N and the nk are very large, show that [3]

ln Ω ≈ −
Q∑

k=0

nk ln(nk/N)

(You may assume that lnn! ≈ n lnn− n for large n.)

(d) Hence show that the maximum entropy macrostate of this system is charac-
terised by the populations [5]

n∗
k =

N exp(−kβ)∑Q
m=0 exp(−mβ)

where β is a constant.
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11. The eigenstates of a one dimensional quantum harmonic oscillator are characterised
by energies (n+ 1/2)h̄ω, where ω is the natural angular frequency of the oscillator
and n is a non-negative integer. Disregarding the zero point energy h̄ω/2, the mean
energy of the oscillator when in equilibrium with a heat bath at temperature T is

〈E〉 =
h̄ω

exp(h̄ω/kT )− 1

(a) Standing electromagnetic wave modes inside a cavity of volume V are quan-
tised as a cubic array in three dimensional wavevector space with separation
between modes ∆k = π/L in each dimension, where L = V 1/3.

i. Using an appropriate dispersion relation, show that the density, in the
space of angular frequency ω, of electromagnetic wave modes is given by

g(ω) =
αV ω2

2c3π2

and explain why the factor α is equal to two. [7]

ii. Regarding each electromagnetic wave mode as a 1-d quantum harmonic
oscillator, but ignoring the zero point energy, calculate the mean energy
of the radiation in the frequency range ω → ω + dω. [2]

iii. Demonstrate the mathematical difficulty that would emerge if we were to
attempt to calculate the total mean energy in the cavity, including the
zero point energy of the electromagnetic field. [2]

(b) In the Einstein model of the vibrational energy of a solid, every atom is
imagined to oscillate in three dimensions about its equilibrium position at a
common angular frequency ωE known as the Einstein frequency.

i. Calculate the constant volume heat capacity Cv of a solid consisting of N
atoms according to this model. [4]

ii. Determine its value as T →∞ and show that at low temperatures it may
be represented as

Cv ≈ 3Nkx2 exp(−x)

where x = h̄ωE/kT . [5]
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