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SECTION B

The time-independent Schrodinger equation for a single particle moving in a one-
dimensional potential is given by
RE dEh
e L, 1% = E.
2 ddx? g

In addition to being & solution to this equation, what other conditions must the
wavefunction y(x) satisfy?
For all parts of the remainder of this question, use the above Schrodinger equation
specifically with ¥{x) = —U§(z), where &%) is the Dirac delta function and U is a
positive constant.
For this special potential, the derivative of ¢ has a discontinuity at the origin re-
sulting in the boundary condition
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dy,
El:_:lrf = E1:=D' = —‘E-EU'I;IH_[}}I.

where = 0" and ¥ =0% are positions immediately to the left and right of the
OTIEL.

{a) Find the general solutions to this Schrodinger equation for E < 0 in the two
regions T < 0 and = = 0.

By using these solutions with the usual boundary condition on ¥ and the boundary
condition on dy/dz given above, find the energy sigenvalue and the normalized
eigenfunction of the single bound state for E < 0.

(b} Find the general solutions to this Schrodinger equation for E > (0 in the two
regions x < () and x > 0.

Using these solutions and the same boundary conditions as in (a) above, show that
the proportion T of particles that are transmitted for a beam of particles incident
from x < [ on the above potential is
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