
Waves, Acoustics and Optics 1224, 2012 R.S. Thorne

Problem Set 5

1. Consider two media with refractive index n1 = 1 and n2 =
√

5/2 = 1.581 with a plane
surface as boundary. Light is incident from a point A in medium 1 which is 10cm from the
boundary and travels to point B in medium 2 which is 10cm the other side of the boundary.
Points A and B are hence separated by a distance of 20cm along the axis perpendicular to
the boundary. They are also separated by 15cm in a direction parallel to the boundary. Show
that the straight-line distance between the points is 25cm. [1]

If the light does travel in a straight line between the points what is the optical path length?
How does this compare to the true path which satisfies Snell’s law, n1 sin θ1 = n2 sin θ2 (where
θ1 and θ2 are the angles between the light ray and the perpendicular to the boundary in each
medium), where sin θ1 = 1/

√

2 and sin θ2 = 1/
√

5? [6]

2. A light ray is incident from a medium of refractive index n1 at an angle 400 to the normal
to a plane surface which forms the boundary to medium 2, with index of refraction n2. It
continues at angle 200 to the normal and then strikes another boundary, parallel to the first.
It continues through this boundary reaching a vacuum, where it now travels at an angle 600

to the normal.

Find the values of n1 and n2. [5]

Explain what happens if the incident beam is incident at an angle of 600 to the normal. [2]

3. We have a system of three consecutive polarising sheets. The axes of second and the third
are at angles θ and 900 respectively to that of the first. Unpolarised light with intensity I0 is
normally incident on the first sheet.

a. Derive an expression for the intensity of light transmitted through the system as a function
of I0 and θ, showing it is I = 1/8 I0 sin2 2θ. [4]

b. For what value of θ does the maximum transmission occur? [3]
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Problem Set 5 - Answers.

1. In the below generic figure for refraction then a = b = 10cm and d = 15cm.
Hence, if the light travels in a straight line then the path is obtained using
Pythagoras’ theorem where the two sides of the right-angled triangle have length
15cm and 20cm. Therefore the distance is

L =
√

152 + 202cm =
√

625cm = 25cm.

Figure 1:

In this case 12.5cm of the path is in each medium so the path length is

n1 × 12.5cm + n2 × 12.5cm = 12.5cm + 1.581 × 12.5cm = 32.26cm.

If instead the path is the one which satisfies Snell’s law the distance in medium
1 is x = 10cm × tan θ1 = 10cm, while the distance in medium 2 is x = 10cm ×

tan θ2 = 10 × 1/2 =5cm. Hence, in this case the path distance is

n1 ×

√

102 + 102cm + n2 ×

√

102 + 52cm = 14.14cm + 1.581 × 11.18cm = 31.82cm.

So the true path has the shorter optical path length, consistent with Fermat’s
theorem.
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2. At each boundary we have the application of Snell’s law, i.e.

n1 sin θ1 = n2 sin θ2 and n2 sin θ2 = sin θvac.

From the second condition

n2 = sin θvac/ sin θ2 = sin 600/ sin 200 = 2.53.

Inputting into

n1 sin θ1 = n2 sin θ2 → n1 = 2.53 sin 200/ sin 400 = 1.35.

If the incident beam is incident at an angle of 600 to the normal

sin θ2 = (1.35/2.53) sin 600 = 0.462 → sin θ2 = 27.50.

This then leads to

sin θvac = 2.53 sin θ2 = 1.17

which is greater than 1. So there is no real solution for θvac and we have total
internal reflection at the boundary of medium 2 and the vacuum.

3. a. From the first polariser we obtain linearly polarised from unpolarised
light. Therefore intensity is average over of I0 cos2 θ over all angles, i.e.

I1 = 1

2
I0.

Using the Law Of Malus

I2 = I1 cos2 θ = 1

2
I0 cos2 θ.

The angle ψ between second and third polarsier is ψ = 900
− θ so

I3 = I2 cos2(ψ) = I2 cos2(900
− θ) = I2 sin2 θ = 1

2
I0 cos2 θ sin2 θ.

But sin θ cos θ = 1

2
sin 2θ, so

I3 = 1/8I0 sin2 2θ.

b. To maximise intensity we must find dI3/dθ = 0, which gives

dI

dθ
= 1/8I0 × 4 sin 2θ cos 2θ

= 1

2
I0 sin 2θ cos 2θ

= 1/4I0 sin 4θ.

This is zero for 4θ = π, i.e. θ = π/4.
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Problem Set 6

1. The precise expression for the reflection coefficients for the components of the light parallel
to the boundary and perpendicular are

r‖ =
nt cos θi − ni cos θt

nt cos θi + ni cos θt

, r⊥ =
ni cos θi − nt cos θt

ni cos θi + nt cos θt

.

Using Snell’s law to eliminate θt show that r‖ = 0 if [3]

n2
t

n2
i

cos2 θi = 1 −

n2
i

n2
t

sin2 θi

Using this result show that there is an angle θB = tan−1(nt/ni) (Brewster’s angle) at which
r‖ = 0, and at which the reflected light is polarised (you will find it useful to use the relation-

ship 1 = sin2 θ + cos2 θ). [4]

2. Two flat rectangular glass sheets touch at one end and are separated by a hair 100mm
from, and parallel to, that edge to form a wedged shaped gap. When illuminated at near-
normal incidence with light with a wavelength of 500nm fringes are observed in reflection with
a spacing of 1mm. Calculate the thickness of the hair. [5]

The gap is now filled with oil of refractive index n = 1.5 How does the separation of the
fringes change? [2]

3. In air a lens with one convex curved surface and one flat surface lies on a flat horizontal
reflecting surface with curved side downwards. The radius of curvature for the lens is 20cm.
The flat surface of the lens is illuminated from above with sodium light with wavelength
λ0 = 589.29nm. The light strikes the flat surface of the lens at right angles to the surface,
i.e. we have set up the apparatus for Newton’s rings. The refractive index of air may be
assumed to be n = 1. The interference pattern is observed and then the gap between the
curved surface of the lens and the surface it rests on is filled with a liquid with refractive
index n = 1.461. What is the ratio of the radius of the 13th dark band before introducing the
liquid to after introducing it? [5]

What is the radius of the 13th dark band in the second case? [2]

Extra questions not for Assessment.

4. Right-circularly polarised light travelling in the z direction may be generated by first
passing unpolarised light through a linear polariser with axis along the line x = y and then
introducing a quarter wave plate which retards the component along the y axis by π/2 com-
pared so that along the x axis. For left-circularly polarised light the polariser is the same but
the plate is such that the component along the y axis is advanced by π/2 compared to that
along the x axis.
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A receptor for each polarisation can be obtained by rotating the generator by π about the
y-axis so that the effect of the quarter wave plate remains the same, but the axis of the
linear polariser is along the line x = −y. Show that this does result in all the light from the
right-circular generator being transmitted by the right-circular receiver. [3]

Explain what happens when light from the right-circular generator is incident on the left-
circular receiver. [3]

A pair of glasses used for viewing 3D films consists of one lens which is a right-circular receiver
(the right-hand lens) and one which is a left-circular receiver (the left-hand lens), i.e. for each
the light first goes through the wave plate, which has an opposite effect for each lens, then
through the linear polariser, which is the same for each lens. In this case we assume the linear
polariser is along the x axis and the quarter wave plate retards or advances along the line
x = y. We label the face where light usually enters as A and where it leaves to go to the
eye as B. Extend the argument in the last part of the question to explain the features of the
glasses viewed in the lectures, i.e.

a. When face A of one set is adjacent to face B of the other (i.e. one set is simply on top of
the other) light is transmitted whatever the relative orientation of the glasses, or whichever
lens is adjacent to the other. [2]

b. When face B of one pair is adjacent to face B of the other there is no dependence on
whether the right-hand lens of one pair is next to the right-hand or the left-hand lens of the
other pair, and light is transmitted if both pairs have the same orientation, but is not if they
are tilted at right angles to each other whatever the orientation. [2]

c. When face A of one pair is adjacent to face A of the other (i.e. glasses face each other), if one
looks through the right-hand lens of each pair light is transmitted irrespective of orientation,
while if one looks through the left-hand lens of one pair and the right-hand lens of the other
light is not transmitted. [2]

5. When using the glasses in question 3 we also notice that in situation a, although light was
transmitted independent of the relative orientation of the glasses, it was orange/yellow when
they had the same orientation and blue when they were at right angles. Explain why this
happens. For the even more ambitious, explain why in c if one looks through the right-hand
lens of one pair and the left-hand lens of the other there is no transmission when they are at
right angles but a very small amount of purple light gets through when they are parallel.
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Problem Set 6 - Answers.

1. r‖ = 0 if nt cos θi = ni cos θt But from Snell’s law sin θt = (ni/nt) sin θi. Therefore, r‖ = 0
if

n2

t cos2 θi = n2

i (1 − sin2 θt),

and using Snell’s law this becomes

n2

t cos2 θi = n2

i

(

1 −
n2

i

n2
t

sin2 θi

)

.

And so dividing through by n2
i ,

n2
t

n2
i

cos2 θi = 1 −
n2

i

n2
t

sin2 θi. [3]

Using the identity 1 = sin2 θ + cos2 θ in the above

n2
t

n2
i

cos2 θi = cos2 θi + sin2 θi −
n2

i

n2
t

sin2 θi.

Putting all common terms on the same side

cos2 θi

(

n2
t

n2
i

− 1

)

= sin2 θi

(

1 −
n2

i

n2
t

)

.

Therefore

cos2 θi

n2
t − n2

i

n2
i

= sin2 θi

n2
t − n2

i

n2
t

,

which quickly leads to

cos2 θi

n2
i

=
sin2 θi

n2
t

→
sin2 θi

cos2 θi

≡ tan2 θi =
n2

t

n2
i

.

taking the square root of both sides then r‖ = 0 for the angle θp = tan−1(nt/ni) (Brewster’s
angle). [4]

2. From the expression in lectures we get constructive interference when

x =
λ(p + 1

2
)

2α
,

where α is the wedge angle and p is an integer. So the distance between two fringes is when
p increases by 1, i.e.

∆x =
λ

2α
→ α =

λ

2∆x
.
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Here λ = 500nm and ∆x = 1mm. Therefore α = 2.5× 10−4 radians. But if d is the diameter
of the hair,

α = d/100mm,

and so d = 0.025mm. [3]

If the gap is now filled with oil of refractive index n = 1.5 the optical path difference of the
light travelling through the gap is increased by a factor of 1.5, i.e. the separation between
fringes is given by

1.5∆x =
λ

2α
.

So the separation of the fringes reduces to 1mm/1.5 = 0.666mm. [2]

3. The radius of the pth bright band is given from the lecture notes as r2 = (p + 1

2
)Rλ/n,

where R is the lens curvature. It is p + 1

2
because the phase shift at one boundary means

constructive interference needs a half-integer number of wavelengths path difference. Dark
bands require destructive interference and an integer number of wavelengths path difference
so r2 = pRλ/n. Hence,

rp =
√

pλR/n.

Denoting the radius of the band in air by ra
p and that in the liquid by rl

p and similarly for the
refractive indices then we find that

ra
p

rl
p

=

√

(pλR/na)

(pλR/nl)
.

Using na = 1 then the cancellation of other terms leads to

ra
p

rl
p

=
√

nl,

independent of the order of the fringe. In this case this is

ra
p

rl
p

=
√

1.461 = 1.209,

The radius of the 13th dark band in the second case is

rl
13 =

√

13 × 589.29 × 10−9 × 0.2/1.461 = 1.02mm.

Extra Questions not for Assessment.

4. The right-circularly polarised light has equal components of the field vector along the x
and y axes but the component along the y axis is retarded by π/2. If it travels through the
quarter wave plate again the phase of the light with field along the y axis is delayed by a
further π/2 i.e. by a total of π. But a phase change of π simply reverses the direction of the
field. Thus the part of the field polarised along the y axis is now polarised along the negative
y axis. The component polarised along the x axis is unchanged, so after passing through
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the wave plate the second time the light is linearly polarised along the line x = −y. But
this is the axis of polarisation for the linear polariser in the receiver so all the light from the
right-circular generator is transmitted by the right-circular receiver. [3]

The right-circularly polarised light has equal components of the field vector along the x and y
axes but the component along the y axis is retarded by π/2. Passing through the wave plate
for the left circular polariser this retardation is reversed and the field components along the
x and y axes are back in phase. Thus we have light linearly polarised along the line x = y.
But the axis of polarisation for the linear polariser in the receiver is the line x = −y which
is perpendicular, so no light is transmitted when light from the right-circular generator is
incident on the left-circular receiver. [3]

a. When face A of one set is adjacent to face B of the other (i.e. one set is simply on top of
the other) unpolarised light enters the top pair of glasses, passes through the wave plate, and
hence remains unpolarised. It then passes through the polariser so becomes linearly polarised
along the x axis. Passing through either wave plate when entering the second pair of glasses
produces either right or left circularly polarised light. This then hits a second polariser with
axis along the x axis. Since circularly polarised light is rotating, on average half of it is
transmitted by a linear polariser along any axis in the plane of its rotation, so half the light
gets through regardless of the orientation of the linear polariser. [2]

b. When face B of one pair is adjacent to face B of the other the linear polariser of the two
pairs are adjacent with no wave plate between them. The axis of this is the same in each
case, it is the wave plates which have opposite effects in each lens. Hence, this is just like
having two equal linear polarisers next to each other, whichever lens is next to the other. If
they have the same orientation all light is transmitted. If the are at right angles none is. [2]

c. When face A of one pair is adjacent to face A of the other (i.e. glasses face each other),
the light entering one is circularly polarised, i.e. the light enters from the side where the
lens acts as a generator of circularly polarised light. However, the second lens is still acting
as a receiver. Hence, if light enters the right-hand lens it will be right-circularly polarised.
It will then be transmitted fully by the second right-hand lens acting as a receiver. This
does not depend on orientation since there is no preferred axis for circularly polarised light.
If light enters the right-hand lens, becoming right-circularly polarised and then this enters
the left-hand lens, the latter is the receiver for left-circularly polarised light and nothing is
transmitted. Clearly the argument is the same if the incoming light enters the left-hand lens.
It is fully transmitted by the second left-hand lens, but not transmitted if the second lens is
the right-hand lens. [2]

5. Here we have to take into account that the generation of circularly polarised light relies
on introducing a π/2 phase difference. This means there is a quarter wavelength difference in
light transmitted along the two perpendicular directions. This can only be exactly true for
one wavelength, which will be somewhere near the middle of the visible range i.e λ ≈ 450nm.

In part a the light transmitted by the first pair of glasses is linearly polarised along the line x
axis. Passing through the quarter wave plate the light at 450nm will be circularly polarised.
That at the blue end, i.e. shorter wavelength will have one component with a phase shift
> π/2, and so this component will be nearer to being π out of phase, i.e. the light will be
nearer to linear polarisation at right angles to the initial polarisation. That near the red end,
i.e. longer wavelength will have a component with phase shift < π/2 so will have a degree
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of linear polarisation of the same orientation as that transmitted. Hence, if the two lenses
have the same orientation, so the two linear polarisers are along the same axis, there will be
preferential transmission at the redder end compared to the blue. If the second lens is at right
angles to the first the axis of transmission of the second polariser is now at right angles to
the first and there will be preferential transmission at the blue end of the spectrum.

In case c only the light at 450nm will be generated by the first lens with exact circular
polarisation. That at lower wavelength will have a component with phase shift > π/2 and
that at higher wavelength will have a component with phase shift < π/2. Consider the first
lens as the right-hand lens. The wave plate in this lens delays the field component along the
line x = y. If the second lens is the left-hand lens and is parallel to the first the wave plate in
this delays the component along the line x = −y axis, but rotation by 900 about the y axis to
get the lenses facing each other swaps x for −x axes so the delay is actually again along the
line x = y. This means that the light with λ = 450nm has had the phase of the field along
the line x = y changed by π, so its direction is reversed and on reaching the second polariser
there is a component along the line x = −y, i.e. ∝ i− j and along the negative part of the line
x = y, i.e. ∝ −i− j. Hence, the resultant is along the (negative) y axis, and is perpendicular
to the linear polariser so no light is transmitted. However, for λ not exactly equal to 450nm
the phase shift is not exactly π. So the component along x = y is not completely reversed and
the resultant is not exactly along the y axis. Hence, at the red and blue end of the spectrum
some light gets through giving a purple transmission.

If the second lens is perpendicular to the first, the axis where the phase shift is introduced
is further rotated by another 900. Hence, one lens delays along the line x = y and the other
along the line x = −y. Hence, in total both field components are delayed by the same amount
and the light arriving at the second linear polariser has both components back in phase and
the polarisation is the same as transmitted by the first, i.e. along the x axis. However, if the
second lens is oriented perpendicular to the first the linear polarisation of the second lens is
along the y axis, and no light is transmitted independent of wavelength.
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R S Thorne

Problem Set 7

1.a. A Michelson interferometer uses light with a wavelength 600nm. How many
fringe shifts are observed at the centre of the screen if the movable mirror is
moved by 0.1cm? [3]

b. A container 10cm long with flat parallel windows at each end and filled with
air is placed in one arm of the Michelson interferometer and a fringe pattern
is set up for the same light. The air is pumped out of the container and the
pattern shifts by 100 fringes. What is the refractive index of the air? [4]

2.a. The two sodium “D-lines” are at 589.00nm and 589.59nm. What reflectance
R is needed for a Fabry-Perot interferometer to resolve these lines in the tenth
order? [3]

b. What is the minimum spacing of the plates t in order for this to be possible?
[2]

c. If R and t each just satisfy the conditions in parts a. and b. and R is fixed,
by how much would we have to increase t to resolve the red lines in hydrogen
and deuterium at 656.3nm and 656.1nm respectively? [2]

3. As shown in the lectures the pattern formed on a screen when light
is incident on two narrow slits distance d apart is 4I0 cos2(δ/2), where I0 is
the intensity arising from one slit and δ = (2π/λ)d sin θ, where θ is the angle
between the normal to the separation of the slits and the point on the screen.

a. Explain what happens to the pattern if immediately beyond one slit we
introduce a plate of refractive index n = 2 and thickness such that the light
takes half a wavelength to travel through the plate. (Ignore refraction effects
due to the plate.) [2]

b. Alternatively the transmission of one slit is limited to that the amplitude
of light is halved compared to the other slit. Using the definition for the visibility
of fringes, V = (Imax − Imin)/(Imax + Imin) find the value of V in this case. [5]

1



Not for Assessment

4. Each successive ray in the Fabry Perot etalon has amplitude R exp(i(2π/λ)2t cos θ)
compared to the last. This means the total amplitude is proportional to

1 + R exp(i(2π/λ)2t cos θ) + (R exp(i(2π/λ)2t cos θ))2 + · · · (1)

where the sum goes on for an effectively infinite number of terms. Remembering
that R < 1 sum this geometric progression and then take the modulus squared
to show that the intensity

∝
1

1 + R2 − 2R cos((2π/λ)2t cos θ)
. (2)

Show that this is proportional to

1

1 + (4R)/(1 − R)2 sin2((2π/λ)t cos θ)
. (3)
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Problem Set 7 - Answers.

1.a. A Michelson interferometer produces a new fringe each time the distance d increases by
λ/2, which causes the path length to increase by λ. Hence,

∆p =
2∆d

λ
=

2 × 0.1 × 10−2

600 × 10−9
= 3, 333. [3]

b. The change in optical path length between the two situations is the change of refractive
index multiplied by twice the length of the container (since the beam travels through it in
both directions). If this results in a change of p fringes then

pλ = 2(nair − 1)L → nair − 1 = pλ/(2L).

In this case L = 10cm, λ = 600nm, and p = 100 so we obtain

nair − 1 =
100 × 6 × 10−7

2 × 0.1
= 0.0003.

So the refractive index of air is 1.0003 [4].

2.a. The chromatic resolution of the interferometer is given by

λ/∆λ = mπ
√

F = mπ

(

4R

(1 − R)2

)

1

2

.

In this case
4R

(1 − R)2
= (

589

0.59 × 31.4
)2 = 1011.

This leads to

4R = 1011 − 2022R + 1011R2 → 0 = 1 − 2.004R + R2.

Solving the quadratic equation, and taking the solution for R < 1 we obtain R = 0.94. [3]

b. We obtain bright fringes when 2t cos θ = mλ, so if m = 10 this can be obtained for the
minimum t if cos θ = 1, i.e. θ = 0. In this case

2t = 10λ → t = 5λ = 2.95 × 10−6m. [2]

c. For these lines
λ/∆λ = 656/0.2 = 3280.

This is more than 3.2 times bigger than the previous resolution, so if R and hence F remain
the same we must go to m = 33 to obtain resolution. At θ = 0 this means

t = 33λ/2 = 16.5 × 656 × 10−9 = 1.08 × 10−5m. [2]
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3.a If immediately beyond one slit we introduce a plate of refractive index n = 2 and thickness
such that the light takes half a wavelength to travel through the plate, the light from this slit
travels half a wavelength while the light from the other slit travels a quarter of a wavelength.
This introduces a shift of pattern by π/2, so where we had peaks we are now at half maximum
height. [2]

b. When we add waves of unequal amplitude, e.g. amplitudes A and B we obtain light
intensity of

I = A2 + B2 + 2AB cos δ.

So Imax = (A + B)2 when cos δ = 1 and Imin = (A − B)2 when cos δ = −1. So if A = 1 and
B = 1

2
, Imax = 9/4 and Imin = 1/4. Therefore

V = (9/4 − 1/4)/(9/4 + 1/4),

i.e. V = 4/5. [5]

Not for Assessment

4. If we have a geometric progression

1 + x + x2 + · · · + xN ,

where |x| < 1 and N → ∞ the sum is 1/(1 − x). In this case that means the intensity

∝
1

1 − R exp(i(2π/λ)2t cos θ)
,

and so the intensity

∝
1

1 − Re(i(2π/λ)2t cos θ)
×

1

1 − Re(−i(2π/λ)2t cos θ)
=

1

1 + R2 − 2R cos((2π/λ)2t cos θ)
.

This can be rewritten as

1

(1 − R)2 + 2R(1 − cos((2π/λ)2t cos θ))
,

and using (1 − cos(2x)) = 2 sin2 x this is

1

(1 − R)2 + 4R(sin2((2π/λ)t cos θ))
.

Dividing through by (1−R)2 to make the normalisation of the maximum value equal to 1 we
obtain

1

1 + (4R)/(1 − R)2 sin2((2π/λ)t cos θ)
.
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Problem Set 8

1. A pointillistic painting contains many small coloured dots. When the viewer
is very close to the canvas the individual dots and their colours can be dis-
tinguished. At normal viewing distance the dots are not distinguishable and
blend.

a. Assume that the average spacing of the centre of the dots is d = 2.0mm. Also
assume that the diameter D of the pupil of your eye is D = 2.0mm. and that
the least angular separation between dots you can resolve is given by Rayleigh’s
criterion. As you move away from the picture which same-coloured adjacent
dots become indistinguishable first, red (λ = 700nm) or blue (λ = 400nm). [2]

b. At what distance do you cease being able to resolve any dots on the painting?
[3]

c. If the artist wished all dots to become resolvable at the same distance and blue
dots are separated by d = 2.0mm how much should the red dots be separated
by? [3]

2. The pattern from a diffraction grating is shown below in figure 1 where the
x-axis is in units of πd sin θ/λ, and the height of the principal maximum is in
units of N2. The slits have been assumed to be extremely narrow.

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1.0

Figure 1:
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a. State how many slits N there are in the array and explain your answer. [3]

b. Work out the height of the second subsidiary maximum (assuming it is
exactly where sin2(Nπd sin θ/λ) would have a maximum). [3]
c. Show that for the particular case N = 2 the diffraction pattern for the grating
sin2(Nπd sin θ/λ)/ sin2(πd sin θ/λ) is the same as that for the double slit, i.e.
4 cos2(πd sin θ/λ). [3]

3. a. A concave mirror has a focal length of 20cm. What is the position of the
image formed if it is inverted and 4 times smaller than the object? [3]

b. A convex mirror has a focal length of −20cm. What is the position of the
image formed if it is upright and 4 times smaller than the object? [3]

4. An 2 cm object is 20cm to the left of a converging lens with a focal length
of 10cm. A diverging lens of focal length −5cm is 30cm to the right of the first
lens.

a. Calculate the position of the final image. [5]

b. Calculate the overall lateral magnification M of the two-lens system and the
height of the final image. [2]

c. Is the final image upright or inverted? [1]
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Problem Set 8

1. a. We can resolve angles down to θ = 1.22λ/D. Hence, the smaller the
wavelength the smaller the angle, and as we move away the red spots cease to
be distinguishable first. [2]

b. For λ = 400nm then the minimum angle is

θ = 1.22
4 × 10−7

2 × 10−3
= 2.44 × 10−4. (1)

For small angles θ = d/L where d is separation and L is distance away. So

L =
2 × 10−3m

2.44 × 10−4
= 8.2m. [3] (2)

c. Since θmin ∝ λ and L = d/θmin, for the distance to be the same for all colours
the separation should be proportional to λ. So if it is d = 2.0mm for blue it is

d = 2.0mm(λred)/(λblue) = 3.5mm (3)

for red light. [3]

2. a. The diffraction pattern intensity is

sin2(Nπd sin θ/λ)/ sin2(πd sin θ/λ), (4)

and has primary maxima at d sin θ = mλ for integer m, and has zeros for
d sin θ = n/N for integer n except at the primary maxima where n/N = m.
This leads to N − 1 minima between the primary maxima. In this case there
are 6 minima, so N = 7. [3]

b. The second subsidiary maximum will be very near to 7πd sin θ/λ = 5π/2.
This means sin2(7πd sin θ/λ) = 1 but

sin2(πd sin θ/λ) = sin2(5/14) = 0.902. (5)

So the intensity will be 1/0.902 = 1.23 compared to N2 = 49 at the primary
maximum. [3]
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c. We know that sin(2x) = 2 sin x cos x, so

sin2(2πd sin θ/λ)

sin2(πd sin θ/λ)
=

(2 sin(πd sin θ/λ) cos(πd sin θ/λ))2

sin2(πd sin θ/λ)
= 4 cos2(πd sin θ/λ). [3]

(6)

3. a. We use the mirror equation

1

p
+

1

q
=

1

f
, (7)

where p is object distance, q is object distance and f is the focal length. The
magnification M = −q/p = −1/4, so we have that p = 4q. This gives

1

4q
+

1

q
=

1

f
→

4q

5
= f, (8)

resulting in q = 1.25 × 20cm = 25cm. [3]

b. The magnification M = −q/p = 1/4, so we have that p = −4q. This gives

−
1

4q
+

1

q
=

1

f
→

4q

3
= f, (9)

resulting in q = 0.75 × (−20cm) = –15cm. [3]

4. a. Let the image from the first lens be the object for the second lens. So
p1 = 20cm and f1 = 10cm and

1

q1

=
1

f1

−
1

p1

→ q1 =
f1p1

p1 − f1

=
10 × 20

20 − 10
cm = 20cm, (10)

and magnification m1 = −q1/p1 = −20/20 = −1.
For the second lens, p2 = 30cm− 20cm = 10cm. Applying the lens equation

again gives

q2 =
f2p2

p2 − f2

=
−5 × 10

10 + 5
cm = −3.33cm. (11)

and m2 = −(−3.3)/10 = 0.33. So, the image is 3.33cm to the left of the second
lens. [5]

b. Overall lateral magnification M = m1 × m2 = −1 × 0.33 = −0.33, so the
height of the final image is hf = h × |M | = 2 × 0.33 = 0.66cm. [2]

c. Since M < 0 the final image is inverted. [1]
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Problem Solving Tutorial III

1. The diagram showing the projection of a wavefront using Huygens’ principle at
the boundary of two media with refractive indices ni and nt is shown below.

incident wavefront

refracted wavefront

θi

θi

A

B

C

D

θt

θt

vi∆t

ni

nt

What is the length of the line AD on the above figure? By relating the lengths of AD
and BC, and using the fact that ABC and ADC are right-angled triangles, derive
Snell’s law, i.e. ni sin θi = nt sin θt.

2. The electric field for a light wave takes the form

E = E0(cos(kz − ωt) + sin(kz − ωt))i + E0(cos(kz − ωt) − sin(kz − ωt))j. (1)

By choosing a more convenient basis than the unit vectors i and j rewrite this ex-
pression for the field so that the form of polarisation is more clear. What type of
polarised light is it? What are the maximum and minimum amplitudes, and in which
direction would an observer at z = 0 see the light vector rotate as time increases?

3. If we have light incident from a medium with one refractive index ni towards a flat
boundary with another medium of refractive index nt, at angle θi to the normal the
equation for the reflection coefficient for the light with field polarised perpendicular
to the plane of incidence is

r⊥ =
ni cos θi − nt cos θt

ni cos θi + nt cos θt

. (2)
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Using Snell’s law to eliminate dependence on refractive indices show that this is
equivalent to

r⊥ = −

sin(θi − θt)

sin(θi + θt)
(3)

4. The reflection coefficient for light with field polarised parallel to the plane of
incidence is r‖. This is zero at at Brewster’s angle θP = tan−1(nt/ni). Find this
angle for light incident on glass (n = 1.4) from air (n = 1), and vice versa, and in
each case find the value of r⊥ at this angle. In the latter case find also the angle at
which total internal reflection takes place, and compare to Brewster’s angle.

5. Monochromatic blue light with λ0 = 487.99nm is normally incident on a soap film
with n = 1.555, and thickness 1.648×10−6m. Light is reflected from the front surface,
and then the back surface of the soap film, producing two waves travelling backwards
from the original direction of propagation. Find the difference in the optical path
length travelled by the two waves. What phase difference does this correspond to? Is
then any additional phase shift associated with either of the reflections? Taking any
extra shift into account state whether the two reflected components add constructively
or destructively?
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Problem Solving Tutorial III

1. In time interval ∆t the wavefront in the medium with refractive index nt

travels distance vt∆t = c/nt∆t. Hence, the length of AD is vt∆t.

We can see from the geometry that

sin θi = vi∆t/AC and sin θt = vt∆t/AC. (1)

Therefore,
sin θt

sin θi

=
vt

vi

=
c/nt

c/ni

=
ni

nt

. (2)

Hence,
ni sin θi = nt sin θt. (3)

2. Since there are terms involving both cos(kz − ωt) and sin(kz − ωt) then
this will be related to circularly or elliptically polarised light. It is easiest to
analyse the form of the wave by grouping together terms where the dependence
on phase is the same, i.e. grouping cos(kz−ωt) terms together and sin(kz−ωt)
terms together. This results in

E = E0 cos(kz − ωt)(i + j) + E0 sin(kz − ωt)(i − j). (4)

This means we can think of the wave as one linearly polarised wave along the
direction given by i + j and another linearly polarised wave along the direction
given by i − j with equal amplitude, but with phase π/2 behind the first. The
two polarisations are perpendicular, i.e.

(i + j) · (i − j) = i · i − j · j = 1 − 1 = 0, (5)

(where we use i · j = 0). Two perpendicular linearly-polarised waves of equal
amplitude and a π/2 phase difference give circularly polarised light.

The squared amplitude of E0 cos(kz − ωt)(i + j) is

E2

0
cos2(kz−ωt)(i+j)·(i+j) = E2

0
cos2(kz−ωt)(i·i+j·j) = 2E2

0
cos2(kz−ωt). (6)

and similarly of E0 sin(kz − ωt)(i − j)

E2

0
sin2(kz − ωt)(i − j) · (i − j) = 2E2

0
sin2(kz − ωt). (7)

Hence, the total amplitude is
√

2E2
0(cos2(kz − ωt) + sin2(kz − ωt)) =

√
2E0, (8)
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and maximum and minimum are the same, confirming the circular nature of
the polarisation.

At z = 0 and t = 0 the wave is E0(i + j), so is aligned halfway between the
x and y axes. At z = 0 and ωt = π/2, i.e. 1/4 of a period later the wave is
E0(−i+ j), so is aligned halfway between the y axis and negative x axis. Hence,
it is rotating in an anti-clockwise direction.

3. Using Snell’s law

r⊥ =
ni cos θi − nt cos θt

ni cos θi + nt cos θt

=
cos θi − (nt/ni) cos θt

cos θi + (nt/ni) cos θt

=
cos θi − (sin θi/ sin θt) cos θt

cos θi + (sin θi/ sin θt) cos θt

.

(9)
Multiplying top and bottom by sin θt,

r⊥ =
sin θt cos θi − sin θi cos θt

sin θt cos θi + sin θi cos θt

, (10)

which using the standard double angle formula sin(A ± B) = sin A cos B ±
sin B cos A gives the desired result.

4. For light incident from air θp = tan−1 1.4 = 54.50. From Snell’s law the angle
of transmission is 1.4 sin θt = sin 54.50 → θt = 35.50. This gives

r⊥ =
0.58 − 1.4 × 0.81

0.58 + 1.4 × 0.81
= −0.32. (11)

For light incident from glass θp = tan−1(1/1.4) = 35.50 From Snell’s law the
angle of transmission is sin θt = 1.4 sin 35.50 → θt = 54.50, and

r⊥ =
1.4 × 0.81 − 0.58

1.4 × 0.81 + 0.58
= 0.32. (12)

The angle for total internal reflection is sin θc = (nt/ni) which gives sin−1(1/1.4) =
45.60, which is larger than θp as we would expect.

5. The wave reflected from the back surface of the film travels 2×1.648×10−6 =
3.296×10−6m. However, this travel is through the medium with n = 1.555 so the
optical path length is 1.555×3.296×10−6 = 5.125×10−6m. Since the wavelength
is λ0 = 487.99nm this corresponds to (5.125 × 10−6)/(487.99 × 10−9) = 10.5
wavelengths. Each wavelength corresponds to a phase difference of 2π, so the
phase difference between the two reflected waves from this extra path is ∆φ =
10.5 × 2π = 21π.

There is an additional contribution of ∆φ = π from reflection at the front
surface since in this case nt > ni. Hence, the total phase difference is 22π. This
is 11 × 2π, i.e. is an integral factor of 2π so the two contributions are in phase
and add constructively.
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Problem Class IV

1. Light with wavelength 600nm passes through two very narrow slits and the in-
terference pattern is observed on a screen 3m away. The second order m = 2 bright
fringe is at 4.8mm from the centre of the central bright fringe. For what wavelength
of light would the third order m = 3 bright fringe be seen at the same place?

2. A diffraction grating generates an intensity pattern

I = I0

sin2((π/λ)Nd sin θ)

sin2((π/λ)d sin θ)
,

where N is the number of slits and d their separation. Explain the position and
intensity of the primary maxima. A grating has 50,000 slits over a total width of
75mm. How many primary maxima of yellow light with λ = 700nm and blue light
with λ = 400nm can be observed respectively?

3. Determine the maximum distance at which a human eye, with a lens diameter of
4mm, is capable of resolving the headlights of a car if the headlights are 1.2m apart
when the wavelength of the light is taken to be 500nm.

4. For a spherical concave mirror the distance from the mirror of an object p, the
image formed q, and the focal length of the mirror are related by

1

p
+

1

q
=

1

f
.

An object placed 300cm from such a mirror generates an image at 150cm. To where
must we move the object to obtain the object and image at the same distance?

5. A person has a distance between the lens in their eye and their retina of 2cm. The
maximum focusing occurs when the focal length of their lens is 1.98cm. What is their
near point (measured from the lens of their eye)? What type of lens in their glasses
would they need to obtain a near point at 25cm? Assuming the distance between the
lens in their glasses and that in their eye is very small find the focal length of glasses
needed to achieve this.
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Problem Class IV

1. The bright fringes are seen when d sin θ = mλ. At a given point on the
screen sin θ is a constant so if we see the second fringe for light of wavelength
λ1 at the same place as the third fringe for light of wavelength λ2 then

2λ1/d = 3λ2/d → λ2 = 2/3λ1. (1)

So if λ1 = 600nm then λ2 = 400nm.

2. Primary maximum at d sin θ = mλ since both sin2((π/λ)Nd sin θ) and
sin2((π/λ)d sin θ) → 0 but ratio

sin2((π/λ)Nd sin θ)

sin2((π/λ)d sin θ)
→

(

((π/λ)Nd sin θ)

((π/λ)d sin θ)

)2

→ N2, (2)

and hence intensity → I0N
2.

For this grating d = 75mm/50, 000 = 1.5×10−6m. For the primary maxima
d sin θ = mλ, so if λ = 700nm

sin θ = 0.466m, (3)

so there are real solutions for θ for m = 1 and 2. If λ = 400nm, then

sin θ = 0.266m, (4)

so this time there are solutions for θ if m = 1, 2 or 3.

3. For a circular aperture of diameter D the corresponding minimum angular
separation is 1.22λ/D, and at a distance L the angular separation of two points
a distance d apart is given by tan θ = d/L which becomes θ = s/L if θ ≪ 1.
Therefore, to resolve the headlights we must have

d/L > 1.22λ/D → L < dD/(1.22λ). (5)

Inputing the values for this situation

L <
1.2 × 4 × 10−3

1.22 × 5 × 10−7
= 8000m. (6)

4. Simply making the substitution we obtain

1

f
=

1

300cm
+

1

150cm
=

450

45, 000cm
→ f = 100cm. (7)
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If we the insist that p = q then

1

p
+

1

p
=

2

p
=

1

f
, (8)

and so p = 2f = 200cm.

5. The retina distance is q in this situation, and the near point is the value of
p when there is most focusing, i.e. when f = 1.98cm. Hence,

1

p
=

1

f
−

1

q
=

1

1.98cm
+

1

2cm
=

1

198cm
, (9)

and the near point p = 198cm.

We want the near point of the lens plus the glasses to be 25cm, i.e. if
q = 2cm, then p = 25cm. This requires a combined focal length of fcom given
by

1

fcom

=
1

25cm
+

1

2cm
=

27

50cm
. (10)

So the combined focal length is fcom = 50/27 = 1.85cm. The image from the
first lens (the glasses) forms the object for the second. However, if the distance
between the two lenses is negligible the image distance for the first lens is the
same as the object distance for the second but with a minus sign since the
object for the second lens is behind the lens, i.e. we have p2 = −q1. Using the
lens equation

1

q1

=
1

f1

−
1

p1

(11)

and also
1

q2

=
1

f2

−
1

p2

=
1

f2

+
1

q1

=
1

f2

+
1

f1

−
1

p1

. (12)

We can rearrange this to show that

1

q2

+
1

p1

=
1

f1

+
1

f2

=
f1 + f2

f1f2

≡
1

fcom

. (13)

The combined focal length of two lenses with negligible separation is therefore
fcom = f1f2/(f1 + f2).

In this case we want fcom = 1.85cm and have f2 = 1.98 cm so

1

f1

=
1

1.85cm
−

1

1.98cm
→ f1 = 28.2cm. (14)

Hence, the glasses are converging with focal length 28.2cm.
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