UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : PHAS3224

ASSESSMENT : PHAS3224A
PATTERN
MODULE NAME : Nuclear and Particle Physics

DATE : 01-May-09

TIME : 10:00

TIME ALLOWED : 2 Hours 30 Minutes

2008/09-PHAS3224A-001-EXAM-101
©2008 University College London

ANSWER ALL QUESTIONS IN SECTION AAND TWO QUESTIONS FROM SECTION B.

The numbers in square brackets at the right-hand edge of the paper indicate the provisional allocation of maximum marks for each subsection of a question.

SECTION A

Question 1.

Briefly describe the main processes by which photons interact with matter.

Question 2.

Explain why a sustained fission chain reaction is not possible in natural uranium.

Question 3.

Explain the concepts of lepton universality and lepton-quark symmetry.
Briefly discuss the role the Cabibbo angle plays in the weak interactions of quarks.

Question 4.

Explain how Cerenkov radiation can be used for particle identification.

Question 5.

What is the binding energy of a nucleus and what is the physical meaning of the binding energy per nucleon B / A ?

Draw a rough sketch showing B / A as a function of A for stable nuclei. [4 marks]

Question 6.

Why does the existence of the ground-state baryon $\Omega^{-}=s s s$ (where s is a strange quark) imply that quarks possess the property called colour?

SECTION B

Question 7.

Which of the following reactions:

$$
\begin{array}{llr}
\tau^{+} \rightarrow \mu^{+}+v_{\mu}+\bar{v}_{\tau} & & {[3 \text { marks }]} \\
\Omega^{-} \rightarrow \pi^{-}+K^{0} & \Omega^{-}=s s s & {[3 \text { marks }]} \\
p+p \rightarrow e^{+}+K^{+} & & {[3 \text { marks }]} \\
e^{+}+e^{-} \rightarrow \tau^{+}+\tau^{-} & & {[3 \text { marks }]}
\end{array}
$$

are allowed and which are forbidden? Explain why and draw the lowest order Feynman diagrams for the allowed reactions.

A beam of electrons with a momentum of $10 \mathrm{GeV} / \mathrm{c}$ hits a liquid argon detector. Calculate the length of the detector (along the beam axis) necessary to reduce the momentum of the electrons to $1 \mathrm{GeV} / c$. The radiation length of liquid argon is 14 cm .
[5 marks]
Find the range of the force transmitted by the exchange of:
(I) a photon,
(II) a W-boson,
(III) a pion
in interactions where the momentum transfer is close to zero.

What type of energy losses by a particle traversing a medium does the Bethe-Bloch formula shown below describe?

$$
-\frac{d E}{d x}=\frac{4 \pi N_{0} z^{2} e^{4}}{m v^{2}} \frac{Z}{A}\left[\ln \left(\frac{2 m v^{2}}{I\left(1-\beta^{2}\right)}\right)-\beta^{2}-\delta(\gamma)\right]
$$

Sketch the shape of this function and identify the important regions.
[5 marks]
Describe briefly how the properties of the Bethe-Bloch formula can be exploited for particle identification?

Question 8.

Using the concepts of lepton universality and lepton-quark symmetry and ignoring final states that are strongly Cabibbo suppressed relative to the lepton modes estimate the branching ratio for the following decay:
$b \rightarrow c+e^{-}+\bar{v}_{e} \quad$ where the b and c quarks are bound in hadrons.

Numerical data:

$$
\begin{aligned}
& m_{\tau} \approx 1.8 \mathrm{GeV} / c^{2}, m_{u} \approx m_{d} \approx 0.3 \mathrm{GeV} / c^{2}, m_{s} \approx 0.5 \mathrm{GeV} / c^{2}, m_{c} \approx 1.5 \mathrm{GeV} / c^{2}, \\
& m_{b} \approx 4.5 \mathrm{GeV} / c^{2}, m_{t}=175 \mathrm{GeV} / \mathrm{c}^{2} .
\end{aligned}
$$

Which of the following two processes occurs with the higher rate? Explain why.
$\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$
$\pi^{-} \rightarrow e^{-}+\bar{v}_{e}$

Draw the lowest order Feynman diagram for deep inelastic electron-proton scattering. Give an example of such a reaction, naming all final state particles, and making sure that all necessary quantum numbers are conserved.

Estimate the cross-section ratio
$R=\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$
obtained at an $e^{+} e^{-}$collider at the centre-of-mass energy $E_{C M}=2 \mathrm{GeV}$.

Determine the threshold energy for charged pions to produce Cerenkov radiation in water (refractive index $n=1.33$).
[4 marks]
Determine the angle of emission for Cerenkov radiation in water from an electron of energy 1 GeV .
[3 marks]

Question 9.

Define the tenns spontaneous and induced fission and explain what is meant by critical mass.

Which of the two nuclides ${ }^{235} \mathrm{U}$ or ${ }^{239} \mathrm{Pu}$ has a smaller critical mass, and why?

Using the semi-empirical mass fonnula (SEMF):
$M(Z, A)=Z m_{p}+(A-Z) m_{n}-a_{v} A+a_{s} A^{2 / 3}+a_{c} Z^{2} A^{-1 / 3}+a_{a}(Z-A / 2)^{2} A^{-1} \pm \delta a_{p} f(A)$
obtain an expression for Z as a function of A for the stable isobars.

Write down the Shell-Model configuration for the ground state of the isotope ${ }_{11}^{25} \mathrm{Na}$ and deduce its spin-parity J^{P}.

What are the major difficulties associated with sustaining a fusion reaction in a controlled environment?

Which of the following two reactions:
${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} \mathrm{He}+n$
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+n$
gives a better energy output, and why?

Is the isotope ${ }_{8}^{16} O$ stable against β-decay? Explain your reasoning.

Question 10.

Explain why thermal neutrons can induce fission in ${ }^{235} \mathrm{U}$ but cannot in ${ }^{238} \mathrm{U}$.
[4 marks]
Assuming that only protons are excited, deduce the two most likely Shell-Model configurations for the first excited state of ${ }_{3}^{7} L i$.
[6 marks]
The shell model is successful in predicting the spins of the ground states for eveneven, even-odd and odd-even nuclei, but less successful in the case of odd-odd nuclei. Comment on the reason for this.
[5 marks]
Calculate the threshold energy of a v_{τ} beam incident on a fixed target necessary to produce τ-leptons via the reaction $v_{\tau}+n \rightarrow \tau^{-}+p$. Assume $m_{\tau}=1.78 \mathrm{GeV} / \mathrm{c}^{2}$.

Draw a leading order Feynman diagram of the $\nu_{\tau}+n \rightarrow \tau^{-}+p$ process.

The particle $Y \cdot$ can be produced in the strong interaction process

$$
K^{-}+p \rightarrow K^{+}+Y^{-} .
$$

Deduce its baryon number, strangeness, charm and beauty, and using these its quark content.

