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All questions may be attempted but only marks obtained on the best four  solutions will 
count. 
The use of an electronic calculator is n o t  permitted in this examination. 

. (a) You are given a sample of a linear viscoelastic material and an oscillatory 
rheometer. Describe briefly how you would measure the linear rheology of the 
material. 

(b) Given the definition 

/0= G*(co) = ia~ a ( s ) e x p [ - i ~ o s l d s ,  

of the complex shear modulus, give expressions for the storage modulus G' and 
loss modulus G" of the material. 

(c) Prove for the experiment you described in (a) tha t  the shear stress is 

(~lt 
~ = a'3"(t) + ~/ ( t )  

oJ  

where 3' is the shear displacement and ~' the shear rate. 

(d) Calculate the storage and loss moduli for a material with a single exponential 
relaxation time, T. For what value of w are the two moduli equal? 
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. (a) A vortex of strength ~ is present at the point Zo in a region Rz of the complex 
z-plane so tha t  the complex potential  w ( z )  is analytic everywhere in R z  except 
at the point Zo, with 

w ( z )  --~ - ( i ~ / 2 ~ ) l o g ( z  - zo), as z ~ Zo. 

The associated complex velocity is 

dw 
u - iv -- 

dz 

The region Rz is mapped into the region Re of the complex ~'-plane by the 
conformal mapping, analytic within Rz, given by 

C = f ( z ) ,  z = f - l ( C  ) = F ( C ) .  

(i) Show tha t  the vortex at Zo maps to a vortex at Co = f ( z o )  and find its 
strength. 

(ii) Find an expression for the fluid velocity at a point C ~ (0 in Re in terms 
of w ( z ) .  

(iii) Find an expression for the velocity in Re of the vortex at Co in terms of 
w ( z ) ,  given tha t  there is no self-induced motion of a point vortex. 

(b) Suppose tha t  there are point vortices of strength ha, n2,. --, nn with instanta- 
neous positions CI, C2,- . . ,  C, moving in infinite space and that  the vorticity is 
zero elsewhere. Then the quanti ty 

• n n 

H((a,C2,. . . ,C'n) = - - ( 1 / 4 7 r ) E  E 
i = 1  j=l,(j#i) 

ni~j log ICj -Ci l  

is a constant of the motion. 

By considering vortices of strength ±n0 at ~" -- Co, (0, where - denotes complex 
conjugate, find H for this vortex pair and hence deduce th, ~ath of a single 
vortex in the half-plane Im C > 0. 

(c) The quantity H remains a conserved quantity under conformal mappings but 
transforms through 

H ~ ( z , ,  z2, . . . , zn )  = H¢(Cx,  ~ ,  . . . , ~,,) - (1/4~) E n~ log I f ' ( z~)] ,  

i----1 

for C =/ (z) .  
Use this result with tha t  of (b), and the transformation C = z2 to obtain the 
path of a single vortex in the quarter-plane Re z > 0, Im z > 0 and hence 
sketch it. 

MATHGM05 CONTINUED 



3. An equation for the  delayed oscillator mode l  of the  ENSO cycle is 

Tt = - a l T  - (a2/A) t anh  [ A ( T -  r T ( t -  A)] , (1) 

where  a l ,  a2, A, r and A are positive constants,  wi th  r < 1 and a2 > a l ,  and  
T( t )  represents the  sea surface t empera tu re  anomaly  in an equatorial  region of a 
bounded  ocean. 

Describe briefly the  physical process tha t  is responsible for t he  delay t ime A. 

Show tha t  when a2 - a l  > a2r there are at least th ree  different equil ibrium values 
for T. 

W i t h  suitable scaling, an approximate non-dimens ional  form for (1) is 

Tt = T - T 3 - -  " y T ( t -  5) , (2) 

where ~, = ra2/ (a2 -Otl) and 5 = (a2 - a l ) n  • 

Consider the regime with 1/2 < -y < 1, in which an equi l ibr ium value of (2) is 
To = (1 - .y)1/2. 

(a) If T = To + T', where T'  is a small per turba t ion ,  derive the  linearised equa t ion  

T't = (3~/-  2)T'  - "),T'(t - 5) (3) 

(b) Show that  neutral  solutions of (3) oscillate wi th  frequency a1 given by 

ai = ~/[1 - (3 - 2/'y)2] 1/2 , (4) 

and that  a neutral  curve (which divides regions of growing and decaying solu- 
tions) in the  ~/-(~ plane has 

(~ ---- a r c c o s ( 3 -  2 / ? ) / [ ' )  '2 -- ( 3 " / - -  2)2] 1/2 (5) 

(c) 

(d) 

Deduce tha t  on this curve 5 --. oo as ")' --* 1/2 from above. 

By considering 7 = 1 - c  where 0 < c << 1, or otherwise, show tha t  one possible 
solution of (5) has 75 --* 1 as -y --, 1. Given tha t  d'y/d5 is negative on this 
curve, sketch the  shape of the curve. 

By considering the  behaviour of (3) for 5=0, or otherwise, discuss qual i ta t ively 
the  behaviour of solutions near the neutral  curve. 

Discuss qualitatively the expected behaviour  of solutions of (2). 

Wha t  is the  relevance of this behaviour to the  ENSO cycle? 
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4. Two immiscible viscous fluids (say fluid I and fluid 2) are in planar motion, touching 
each other at  their  common interface, the fluid densities being Pl, P2 and viscosities 
#1, #2 respectively. 

(a) Show tha t  the governing equations in fluid 1 may be written in non-dimensional 
form as 

div u = 0, 0 u / 0 t  + (u-  g r a d ) u  = - g r a d  p + R e - l A u  

(b) 

(c) 

where u = (u, v) is the velocity vector and p is the pressure. Define the 
Reynolds number Re. 

Give the corresponding equations in fluid 2 subject to the same non-dimension- 
alisation as in (a). Also give the conditions at the interface. 

If only a small thin layer of fluid 2 is present, with aspect ratio h << 1, provide 
a justification for the expansions 

(u,v ,p)  -= (Ul,Vl,h-lpl)  + . . .  and (u,v,p)  = (h-lu2, v2, h-lp2 ) + . . .  

in fluids 1, 2 respectively. Provide also expressions for the length and time 
scales. 

(d) If the ratios P2/Pl and #2/#1 are small and comparable, derive from (c) the 
different systems of equations tha t  can arise within fluid 1 and within the thin 
layer of fluid 2 over different Re ranges. Identify a critical Re range. 
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5. A one-dimensional model of viscous blood flow in an artery is governed by the 
following system of equations 

OA OQ 
- - - t - - -  - o, Ot Oz 

o - - - i + ~  p Oz K , 

and P - P e x t  = 

Here, Q(z, t), A(z, t) and P(z, t) are the volume flux, the cross sectional area of the 
artery, and the fluid pressure respectively, at a distance z along the artery and at 
time t. All other physicM parameters present in the model remain constant. 

(a) By eliminating the pressure P(z, t), convert the system into the following form 

~ -  + H(u) + B(u)  = 0, (1) 

where 

[ 1] i01 A H ( u ) =  (~A,/2 0 Q2 and B ( u ) =  
u =  Q , ~ , ~ o  - ~ )  ~ ' ~ " 

(b) Obtain the eigenvalues A1 and A2 of the matrix H(u) and, subsequently, de- 
termine a matrix of left eigenvectors L that satisfies 

L H ( u ) = A L  f o r A =  [A1 0 ] 
0 A2 " 

(c) By multiplying equation (1) by ~(Q, A)L, for some smooth scalar function ~, 
derive the Riemann invariants 

] -~ - 4. /-~ A 1 / 4  " 
V 2pAo 

(d) Hence or otherwise, show that these Riemann invariants satisfy the equations 

(0+ (Q.+. ~2~AoA1/4) ~.~._£) (Q +4~2_~ooA1/4 ) +K-~=O. 
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