UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sc.

Cosmology

COURSE CODE : MATHG306

DATE

: 02-MAY-06

TIME

: 10.00

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

Evolution Equations:

$$\dot{a}^2 + k = \frac{8\pi G}{3}\rho a^2 = \frac{H_0^2}{\rho_{c0}}\rho a^2. \tag{1}$$

$$\frac{\mathrm{d}}{\mathrm{d}a}(\rho a^3) = -3pa^2. \tag{2}$$

$$H(t) \equiv \frac{\dot{a}(t)}{a(t)}; \qquad \rho_c \equiv \frac{3}{8\pi G} H^2; \qquad \Omega(t) \equiv \frac{\rho}{\rho_c}.$$

$$H_0 = h \, 100 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}.$$

Development angle/horizon coordinate:

$$\xi(t) \equiv \int_0^t \frac{\mathrm{d}t'}{a(t')}.$$

Robertson-Walker line element:

$$d\tau^2 = dt^2 - a^2(t) \left[d\eta^2 + F^2(\eta) (d\theta^2 + \sin^2\theta d\phi^2) \right].$$

$$F(\eta) = \begin{cases} \sin \eta & k = +1 \\ \eta & k = 0 \\ \sinh \eta & k = -1 \end{cases}$$

- 1. Suppose the universe was radiation dominated for times t before the decoupling time $a_{\rm d}$, with $p = \rho/3$.
 - (a) Show that

$$\rho(a) = \rho_d \left(\frac{a_d}{a}\right)^4$$

where $a_d = a(t_d)$.

- (b) Solve the evolution equations for k = 0 to obtain a(t).
- (c) Show that

$$\rho(t) = \frac{3}{32\pi G}t^{-2}.$$

- (d) Suppose $\rho = NaT^4$ where N is the effective number of radiative species and a is the Stefan-Boltzmann constant. Determine at what cosmic time the universe reaches the temperature T, i.e. find t(T).
- (e) Suppose that nucleosynthesis ends when $T \approx 10^9$ K. Does the corresponding cosmic time $t(10^9)$ increase with N or decrease with N? Briefly describe how $t(10^9)$ affects the ratio of neutron density to proton density ρ_n/ρ_p ? How does this ratio affect the present Helium abundance?
- 2. (a) Consider a galaxy emitting light at cosmic time t_1 , with coordinates $(t_1, \eta_1, \theta_1, \phi_1)$. Suppose we observe this light at cosmic time t_0 . Show that the ratio of the frequencies of observed to emitted light is

$$\frac{\nu_0}{\nu_1}=\frac{a_1}{a_0}.$$

- (b) Express ν_0/ν_1 in terms of the redshift parameter z_1 . Also express ν_0/ν_1 in terms of T_0/T_1 , where T_0 is the present temperature of the microwave background, and T_1 is the temperature at time t_1 .
- (c) For a k=0 matter-dominated universe, the expansion parameter satisfies

$$a(t) = a_0 \left(\frac{3H_0t}{2}\right)^{2/3}.$$

Find a(z), t(z), and r(z) for this universe.

(d) The present record for furthest detected quasar is at z = 6.4. At approximately what cosmic time did the light observed from this quasar begin its journey (assuming h=2/3)?

MATHG306

- 3. (a) The Hubble parameter H_0 is often written $H_0 = h \, 100 \, \rm km \, s^{-1} \, Mpc^{-1}$ (1 pc = 3.3 light years). Express $100 \, \rm km \, s^{-1} \, Mpc^{-1}$ in units of years⁻¹, showing your work. You need only be accurate to within 3%.
 - (b) Let the total mass-energy of the universe be $E(t) = \rho(t)\mathcal{V}(t)$. Show from the evolution equations that E(t) satisfies the equation for adiabatic expansion,

$$dE = -pdV$$
.

- (c) What is the 'entropy problem'? How could the inflationary universe model solve this problem? How could the anthropic principle solve this problem?
- (d) What is meant by the terms *cold dark matter* and *hot dark matter*? If the early universe had been dominated by hot dark matter, why would we expect large clusters of galaxies? Give one example of a particle or object which could be the source of cold dark matter.
- (e) Show that for k = +1,

$$\Omega(t) - 1 = \frac{1}{\dot{a}^2}.$$

Show that for a universe dominated by vacuum energy density ρ_{Λ} ,

$$\Omega(t) - 1 = \frac{3}{8\pi G \rho_{\Lambda}} \frac{1}{a^2}.$$

Briefly, how does inflation in the very early universe bring Ω closer to the value 1?

4. Suppose the universe is static (da/dt = 0) and filled with a gas of mass density ρ , pressure p, velocity \mathbf{v} , and gravitational acceleration \mathbf{F} . The gas obeys the mass equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = 0,$$

and the momentum equation

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \rho \mathbf{F}.$$

(a) Let $\rho = \bar{\rho} + \delta \rho$, $p = \bar{p} + \delta p$, $\mathbf{v} = \delta \mathbf{v}$ and suppose $\mathbf{F} = \delta \mathbf{F}$ where $\nabla \cdot \delta \mathbf{F} = -4\pi G \delta \rho$. Also let $c_s^2 \equiv dp/d\rho$. What is the physical meaning of c_s ? Derive the equation

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_s^2 \nabla^2 \delta \rho - 4\pi G \bar{\rho} \delta \rho = 0.$$

(b) Show that this equation has solutions of the form

$$\delta \rho = A(\mathbf{k})e^{i(\mathbf{k}\cdot\mathbf{x}-\omega(k)t)}$$

Determine $\omega(k)$, expressing your answer in terms of $k_J \equiv 4\pi G\bar{\rho}/c_s^2$. Let the wavelength of a density perturbation be $\lambda = 2\pi/k$. For what range of λ will a perturbation grow? What happens to the perturbation if λ is not in this range?

(c) Suppose a perturbation at some wavelength λ_1 starts at t=0 with maximum amplitude, and reaches its next maximum amplitude at decoupling time $t=t_{\rm d}$. Find an expression for λ_1 in terms of $t_{\rm d}$ and k_J .

5. (a) Consider light emitted at cosmic time t from a distant galaxy with cosmological redshift z. Show that the relation between t and z is given by

$$t(z) = \frac{1}{H_0} \int_z^{\infty} \frac{dz}{(1+z)E(z)},$$

where

$$E(z) = \frac{H(z)}{H_0}.$$

What is the present time t_0 in terms of this integral?

(b) In this problem we will assume that the universe is flat, i.e. k=0. First consider a matter dominated universe, where $\rho=\rho_m$ and $\Omega_0=\Omega_{m0}$. Show that

$$E(z) = E_m(z) = (1+z)^{3/2}$$
.

- (c) Using the integral expression for t(z), calculate t_0 for a k=0 matter dominated universe.
- (d) Next consider a k=0 universe with both matter and vacuum energy, so that $\Omega_0 = 1 = \Omega_{m0} + \Omega_{\Lambda 0}$. Derive an expression for E(z) (call this function $E_{m\Lambda}(z)$).
- (e) Show that the function $E_m(z)$ from part (b) is greater than the function $E_{m\Lambda}(z)$ from part (d) for z > 0 (and $\Omega_{\Lambda 0} > 0$). Does our estimate for the age of the universe increase or decrease if we observe a positive $\Omega_{\Lambda 0}$?