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All questions may be attempted but only marks obtained on the best fou r  solutions will 

count. 
The use of  an electronic calculator is no t  permitted in this examination.  

1. Consider the following initial value problem for a first-order ordinary differential 
equation: 

dy = f ( y , t ) ,  y(O) = Yo. 
dt 

(a) State the key advantages of explicit Runge-Kut ta  methods over 

(i) Taylor-series methods; 

(ii) multi-step methods. 

(b) Show, by considering a Taylor Series expansion of y(t i  + h), that  an explicit 
Runge-Kutta algorithm of the form 

Yi+l = Yi + h w l f  (y~, t~) + hw2f  [yi + c~h f (yi, t~) , t~ + ~h] 

is second-order accurate so long as certain constraints on the parameters wl, 
w2, c~ and B are satisfied. State clearly what these constraints are. 

(c) Define the growth factor g for a general numerical scheme Yi+l = 7-(yi,t~). 
Explain why g is related to the stability of the numerical scheme and show 

that OT 

g "~ Oy~ 

(d) Examine the stability of the above Runge-Kut ta  scheme for the case f ( y )  = Ay. 
Show that  the scheme is stable only for the region of the complex plane where 

1 (Ah)2 
+ A h +  7 < 1. 

Hence, given a positive real stepsize h, for what real values of A is the numerical 
scheme stable? 
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2. Consider the Black-Scholes pricing problem for the value of a European Call Option 
V = V (S, t): 

OV 1 a2 -2 02 V OV 
0----~ + 5 S -~-~ + (r - D ) S - ~  - r V  = O, 

V (O , t )  = O, and l i m V ( S , t ) - , S ,  
S - *  oo  

V ( S , T )  = max (S - E, O) , 

where S >~ 0 is the  spot price of the underlying financial asset, 0 < t ~< T is the 
time, E > 0 is the strike price, T > 0 is the expiry date, r ~> 0 is the interest rate, 
D is the dividend yield, and a is the volatility of S. 

(a) By writ ing S - n S S  for 0 ~ n E N, t = m~t for 0 ~< m ~< M, and expressing 
the derivative terms as 

GgV -., Vn m -- Vn m-1 O f  V~{n~,- Vnm_l 02V Vnm_l - 2Vn TM -]- Vnn~l 

Ot 6t ' OS 25S ' 0 S  2 ~S 2 ' 

(you  a r e  n o t  r e q u i r e d  t o  de r ive  t h e  Tay lo r  se r ies  e x p a n s i o n s )  obtain 
the backward marching scheme in time, 

V$ -I = a.V~_1 +/3~V~ + 7~V~"~I , (BMS) 

where 

1 1 (n2a2+ n (r - D)) St. an=~  (n2a 2-  n (r - D)) 6t, /3n= 1 - ( r  + n2a 2) St, ~ , =  

(b) Show tha t  the payoff and boundary conditions, in turn, can be expressed in 
finite difference form as 

Final Payoff: 

At S =  0: 

As S --, oo: M / >  m/> 1. 

(c) Consider an initial disturbance that  is proportional to exp (inw). If V~ is an 
approximation to the exact solution V. m then 

n , 

E m W $ =  V j "  + n , 
A 

where En T M  is the associated error, and V m also satisfies (BMS) to give 

EY -1 = ~.EY_I + Z . E y  + ~.Znm+l. 

By put t ing  

Vn M = max  ( n S S -  E,O) O ~ n <<. N; 

Vom-l = DoVo m M >~ m >~ l; 

v ~ - '  = (aN - ~u) V~"_, + (Z~ + 2~U) V;' 

En rn = A m exp (inw), 

which is an oscillatory expression of amplitude A m and frequency w, use a 

Fourier stability analysis to show that for this scheme to remain stable requires 
the strict condition: 6t .~ O (N-2) .  
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. (a) The Excel function RAND() produces a random variable which is uniformly 
1 and variance distributed over 0 and 1. Show that  this has a mean # = 

G 2 : 1  
12" 

(b) If we generate any number N of these random variables then, by the Central 
Limit Theorem, the algorithm, 

produces a single standardised Normal ¢ ,-~ N (0, 1), i.e. each ¢ is normally 
distributed with mean zero and variance of one. Show that  the expression 
given by (RV) does produce a Normally-distributed random variable with zero 
mean and unit variance. 

(c) The fair price of an option is defined as the "expected value of the discounted 
payoffs under the risk-neutral measure", i.e. 

EQ ( [exp -- o~t Tr ( T ) dT] Payof f (S) )  

where S (t) is an asset price, r (t) is the interest rate and Q is the risk-neutral 
density. A European call option is to be priced writ ten on an equity using 
stochastic interest rates. Suppose this stock price S evolves according to the 
lognormal random walk and the interest rate follows the Cox-Ingersoll-Ross 
model. The increments in Brownian Motion dX~ of the two processes are 
correlated such that  E [dXldX2] = pdt, where p is the correlation coefficient 
and dt the time step. 

Describe in detail the Monte Carlo scheme you would use to price such a 
contract, which should include details of how to: 

(i) discretise the relevant stochastic differential equations; 

(ii) produce correlated random variables; 

(iii) calculate the discount factor. 
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4. An axially loaded elastic bar consists of two parts, 1 and 2, of length L1 and L2, each 
having a constant Young modulus E, constant cross-sectional area A and constant 
external body force per unit  axial length b (see the figure below). The equation for 
the axial displacement y of the bar is given by 

d ( E A ~ x x ) + b = 0 ,  O~x<~L ,  
dx 

where L is the total length of the bar. The bar is fixed at its left end (x = 0), while 
the right end is subjected to a tensile force f; i.e., we have the boundary conditions 

y(O) = O, (EAdY'~ = f. 
\ dxJ z=L 

t 

×--v kl 

(a) Derive the weak formulation of the boundary-value problem. 

(b) Using the Galerkin approach, deduce that  the single-element stiffness matrix, 
K e, and load vector, f[,  are given by 

K~ = k \ dx dx ] dx' 
jfx x! 

/ 5  = bg; dz, 
k 

with N e (i = 1, 2) the shape functions of a 2-node linear element, and xk and 
xz the element boundaries. 

(c) Solve the FE equation for a mesh of two simple linear elements of length L1 
and L2. 

(d) Obtain the tensile force at x = 0 required to maintain equilibrium of the bar. 
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5. Consider Poisson's equation, 

~2 ?./, 02U 
- -  f ,  Ox 2 Oy 2 

on the triangular domain ft shown, subject to the boundary conditions 

u = g  onF1 
Ou = 0 on F2 

F~ u F2 = rift). 

Here, Ou is the normal derivative, and f and g are given functions. 

(/ - 

(a) Derive the weak formulation of this boundary-value problem. 

(b) Compute the finite-element stiffness matrix for this problem using a single 
element. The shape functions for a simple 3-node triangular element are given 
by 

1 
N.~(x,y)= -~- -~[x jyk- -Xky j+(y j - -yk)x+(xk- -x j )y]  ( i , j ,  kcyclic), 

where (xi, Yi) are the coordinates of the i th  node and A is the area of ft. 

(c) The triangular domain is now subdivided into two 3-node tr iangular  finite 
elements (see below). The local and global node numbering is as indicated. 
Find the global stiffness matrix in terms of the entries K}j and K~ of the 
element matrices K 1 and K 2 (do not actually compute these element matrices). 

w 

2 
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6. The concentration of a tracer chemical, q(x,t),  in a thin tube satisfies the one- 
dimensional conservation law, 

Oq O 
O'--t + -~x f(q) = 0, (CL) 

for some given flux function f (q) .  

(a) By integrating (CL) over a finite-volume cell Ci = (xi-1/2,xi+a/2), and then 
integrating from time t = t ,  to t = t~+a, obtain the finite-volume form, 

At 
Q~+I = V~ _ A---~ (Fi+l/2 - FiLl/2)'  

where Q~ is the average value of q(x, t) over the cell Ci at time tn, Ax = 
(zi+l/2 - xi-1/2) and At  = ( t ,+l  - tn). Define the integral forms of Q~ and 
Fi+l/2 in terms of q and f (q) .  

(b) Suppose the following explicit finite-volume method is used to solve (CL): 

n A t  [~(Q'~,Q'~+I)-~(Q'~_~,Q'~)].  
Q +a = _ A---7 

Here, .7" is a numerical approximation to the flux function that  depends o n l y  
on the neighbouring cell averages at the previous time step, which are Q~-I, 
Q~ and Qin+l. By taking, as a specific example, the advection equation 

Oq _ Oq 

for a given positive constant 72, explain graphically why the Courant, Friedrichs 
and Lewy (CFL) Condition tha t  

A x  <.1 

is a necessary condition for the stability of such a method. 

(c) The Lax-Friedrichs finite-volume method is given by 

Q n + l _  1 (Q~-I + Q~+I) At 
- 2 - 2A---~ [ f  (Q~+I)  - f ( Q ~ - , ) ]  • ( L F )  

Show that  this method is equivalent to a finite-difference approximation to the 
advection-diffusion equation, 

OQ a aa2Q 
+ ( f ( Q ) )  = '- a x :  ' 

where ~ = ~-~.a:2 Hint: use forward differencing in time and central differencing 
in space. Hence, explain what problems may arise on using the Lax-Friedrichs 
method (LF) to solve the conservation law (CL)? 
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