University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

M.Sc. PG Dip

Computational and Simulation Methods

COURSE CODE : MATHGM04

DATE : 10-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Consider the following initial value problem for a first-order ordinary differential equation:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=f(y, t), \quad y(0)=y_{0}
$$

(a) State the key advantages of explicit Runge-Kutta methods over
(i) Taylor-series methods;
(ii) multi-step methods.
(b) Show, by considering a Taylor Series expansion of $y\left(t_{i}+h\right)$, that an explicit Runge-Kutta algorithm of the form

$$
y_{i+1}=y_{i}+h \omega_{1} f\left(y_{i}, t_{i}\right)+h \omega_{2} f\left[y_{i}+\alpha h f\left(y_{i}, t_{i}\right), t_{i}+\beta h\right]
$$

is second-order accurate so long as certain constraints on the parameters ω_{1}, ω_{2}, α and β are satisfied. State clearly what these constraints are.
(c) Define the growth factor g for a general numerical scheme $y_{i+1}=\tau\left(y_{i}, t_{i}\right)$. Explain why g is related to the stability of the numerical scheme and show that

$$
g \approx \frac{\partial \tau}{\partial y_{i}}
$$

(d) Examine the stability of the above Runge-Kutta scheme for the case $f(y)=\lambda y$. Show that the scheme is stable only for the region of the complex plane where

$$
\left|1+\lambda h+\frac{(\lambda h)^{2}}{2}\right|<1
$$

Hence, given a positive real stepsize h, for what real values of λ is the numerical scheme stable?
2. Consider the Black-Scholes pricing problem for the value of a European Call Option $V=V(S, t)$:

$$
\begin{gathered}
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-D) S \frac{\partial V}{\partial S}-r V=0 \\
V(0, t)=0, \text { and } \lim _{S \rightarrow \infty} V(S, t) \rightarrow S \\
V(S, T)=\max (S-E, 0)
\end{gathered}
$$

where $S \geqslant 0$ is the spot price of the underlying financial asset, $0<t \leqslant T$ is the time, $E>0$ is the strike price, $T>0$ is the expiry date, $r \geqslant 0$ is the interest rate, D is the dividend yield, and σ is the volatility of S.
(a) By writing $S=n \delta S$ for $0 \leqslant n \leqslant N, t=m \delta t$ for $0 \leqslant m \leqslant M$, and expressing the derivative terms as

$$
\frac{\partial V}{\partial t} \sim \frac{V_{n}^{m}-V_{n}^{m-1}}{\delta t}, \quad \frac{\partial V}{\partial S} \sim \frac{V_{n+1}^{m}-V_{n-1}^{m}}{2 \delta S}, \quad \frac{\partial^{2} V}{\partial S^{2}} \sim \frac{V_{n-1}^{m}-2 V_{n}^{m}+V_{n+1}^{m}}{\delta S^{2}}
$$

(you are not required to derive the Taylor series expansions) obtain the backward marching scheme in time,

$$
\begin{equation*}
V_{n}^{m-1}=\alpha_{n} V_{n-1}^{m}+\beta_{n} V_{n}^{m}+\gamma_{n} V_{n+1}^{m} \tag{BMS}
\end{equation*}
$$

where

$$
\alpha_{n}=\frac{1}{2}\left(n^{2} \sigma^{2}-n(r-D)\right) \delta t, \beta_{n}=1-\left(r+n^{2} \sigma^{2}\right) \delta t, \gamma_{n}=\frac{1}{2}\left(n^{2} \sigma^{2}+n(r-D)\right) \delta t
$$

(b) Show that the payoff and boundary conditions, in turn, can be expressed in finite difference form as

$$
\begin{aligned}
\text { Final Payoff: } & V_{n}^{M}=\max (n \delta S-E, 0) \quad 0 \leqslant n \leqslant N \\
\text { At } S=0: & V_{0}^{m-1}=\beta_{0} V_{0}^{m} \quad M \geqslant m \geqslant 1 \\
\text { As } S \rightarrow \infty: & V_{N}^{m-1}=\left(\alpha_{N}-\gamma_{N}\right) V_{N-1}^{m}+\left(\beta_{N}+2 \gamma_{N}\right) V_{N}^{m} \quad M \geqslant m \geqslant 1
\end{aligned}
$$

(c) Consider an initial disturbance that is proportional to $\exp (\mathrm{i} n \omega)$. If \widehat{V}_{n}^{m} is an approximation to the exact solution $V_{n}{ }^{m}$, then

$$
\widehat{V}_{n}^{m}=V_{n}^{m}+E_{n}^{m},
$$

where $E_{n}{ }^{m}$ is the associated error, and \widehat{V}_{n}^{m} also satisfies (BMS) to give

$$
E_{n}^{m-1}=\alpha_{n} E_{n-1}^{m}+\beta_{n} E_{n}^{m}+\gamma_{n} E_{n+1}^{m} .
$$

By putting

$$
E_{n}^{m}=\lambda^{m} \exp (\mathrm{i} n \omega),
$$

which is an oscillatory expression of amplitude λ^{m} and frequency ω, use a Fourier stability analysis to show that for this scheme to remain stable requires the strict condition: $\delta t \sim O\left(N^{-2}\right)$.
3. (a) The Excel function RAND() produces a random variable which is uniformly distributed over 0 and 1 . Show that this has a mean $\mu=\frac{1}{2}$ and variance $\sigma^{2}=\frac{1}{12}$.
(b) If we generate any number N of these random variables then, by the Central Limit Theorem, the algorithm,

$$
\begin{equation*}
\sqrt{\frac{12}{N}}\left(\sum_{1}^{N} R A N D()-\frac{N}{2}\right) \tag{RV}
\end{equation*}
$$

produces a single standardised Normal $\phi \sim N(0,1)$, i.e. each ϕ is normally distributed with mean zero and variance of one. Show that the expression given by (RV) does produce a Normally-distributed random variable with zero mean and unit variance.
(c) The fair price of an option is defined as the "expected value of the discounted payoffs under the risk-neutral measure", i.e.

$$
\mathbb{E}_{\mathbb{Q}}\left(\left[\exp -\int_{t}^{T} r(\tau) d \tau\right] \text { Payoff }(S)\right)
$$

where $S(t)$ is an asset price, $r(t)$ is the interest rate and \mathbb{Q} is the risk-neutral density. A European call option is to be priced written on an equity using stochastic interest rates. Suppose this stock price S evolves according to the lognormal random walk and the interest rate follows the Cox-Ingersoll-Ross model. The increments in Brownian Motion $d X_{i}$ of the two processes are correlated such that $\mathbb{E}\left[d X_{1} d X_{2}\right]=\rho d t$, where ρ is the correlation coefficient and $d t$ the time step.
Describe in detail the Monte Carlo scheme you would use to price such a contract, which should include details of how to:
(i) discretise the relevant stochastic differential equations;
(ii) produce correlated random variables;
(iii) calculate the discount factor.
4. An axially loaded elastic bar consists of two parts, 1 and 2 , of length L_{1} and L_{2}, each having a constant Young modulus E, constant cross-sectional area A and constant external body force per unit axial length b (see the figure below). The equation for the axial displacement y of the bar is given by

$$
\frac{d}{d x}\left(E A \frac{d y}{d x}\right)+b=0, \quad 0 \leqslant x \leqslant L
$$

where L is the total length of the bar. The bar is fixed at its left end $(x=0)$, while the right end is subjected to a tensile force f; i.e., we have the boundary conditions

$$
y(0)=0, \quad\left(E A \frac{d y}{d x}\right)_{x=L}=f
$$

(a) Derive the weak formulation of the boundary-value problem.
(b) Using the Galerkin approach, deduce that the single-element stiffness matrix, K^{e}, and load vector, f_{l}^{e}, are given by

$$
K_{i j}^{e}=\int_{x_{k}}^{x_{l}}\left(E A \frac{d N_{i}^{e}}{d x} \frac{d N_{j}^{e}}{d x}\right) d x, \quad f_{l j}^{e}=\int_{x_{k}}^{x_{l}} b N_{j}^{e} d x
$$

with $N_{i}^{e}(i=1,2)$ the shape functions of a 2-node linear element, and x_{k} and x_{l} the element boundaries.
(c) Solve the FE equation for a mesh of two simple linear elements of length L_{1} and L_{2}.
(d) Obtain the tensile force at $x=0$ required to maintain equilibrium of the bar.
5. Consider Poisson's equation,

$$
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f
$$

on the triangular domain Ω shown, subject to the boundary conditions

$$
\left\{\begin{array}{ll}
u=g & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial n}=0 & \text { on } \Gamma_{2}
\end{array} \quad \Gamma_{1} \cup \Gamma_{2}=\Gamma(\Omega) .\right.
$$

Here, $\frac{\partial u}{\partial n}$ is the normal derivative, and f and g are given functions.

(a) Derive the weak formulation of this boundary-value problem.
(b) Compute the finite-element stiffness matrix for this problem using a single element. The shape functions for a simple 3-node triangular element are given by

$$
N_{i}^{e}(x, y)=\frac{1}{2 A}\left[x_{j} y_{k}-x_{k} y_{j}+\left(y_{j}-y_{k}\right) x+\left(x_{k}-x_{j}\right) y\right] \quad(i, j, k \text { cyclic })
$$

where $\left(x_{i}, y_{i}\right)$ are the coordinates of the i th node and A is the area of Ω.
(c) The triangular domain is now subdivided into two 3 -node triangular finite elements (see below). The local and global node numbering is as indicated. Find the global stiffness matrix in terms of the entries $K_{i j}^{1}$ and $K_{i j}^{2}$ of the element matrices K^{1} and K^{2} (do not actually compute these element matrices).

6. The concentration of a tracer chemical, $q(x, t)$, in a thin tube satisfies the onedimensional conservation law,

$$
\begin{equation*}
\frac{\partial q}{\partial t}+\frac{\partial}{\partial x} f(q)=0 \tag{CL}
\end{equation*}
$$

for some given flux function $f(q)$.
(a) By integrating (CL) over a finite-volume cell $\mathcal{C}_{i}=\left(x_{i-1 / 2}, x_{i+1 / 2}\right)$, and then integrating from time $t=t_{n}$ to $t=t_{n+1}$, obtain the finite-volume form,

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

where Q_{i}^{n} is the average value of $q(x, t)$ over the cell \mathcal{C}_{i} at time $t_{n}, \Delta x=$ $\left(x_{i+1 / 2}-x_{i-1 / 2}\right)$ and $\Delta t=\left(t_{n+1}-t_{n}\right)$. Define the integral forms of Q_{i}^{n} and $F_{i \pm 1 / 2}$ in terms of q and $f(q)$.
(b) Suppose the following explicit finite-volume method is used to solve (CL):

$$
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathcal{F}\left(Q_{i}^{n}, Q_{i+1}^{n}\right)-\mathcal{F}\left(Q_{i-1}^{n}, Q_{i}^{n}\right)\right]
$$

Here, \mathcal{F} is a numerical approximation to the flux function that depends only on the neighbouring cell averages at the previous time step, which are Q_{i-1}^{n}, Q_{i}^{n} and Q_{i+1}^{n}. By taking, as a specific example, the advection equation

$$
\frac{\partial q}{\partial t}+\bar{u} \frac{\partial q}{\partial x}=0
$$

for a given positive constant \bar{u}, explain graphically why the Courant, Friedrichs and Lewy (CFL) Condition that

$$
\left|\frac{\bar{u} \Delta t}{\Delta x}\right| \leqslant 1
$$

is a necessary condition for the stability of such a method.
(c) The Lax-Friedrichs finite-volume method is given by

$$
\begin{equation*}
Q_{i}^{n+1}=\frac{1}{2}\left(Q_{i-1}^{n}+Q_{i+1}^{n}\right)-\frac{\Delta t}{2 \Delta x}\left[f\left(Q_{i+1}^{n}\right)-f\left(Q_{i-1}^{n}\right)\right] . \tag{LF}
\end{equation*}
$$

Show that this method is equivalent to a finite-difference approximation to the advection-diffusion equation,

$$
\frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}(f(Q))=\beta \frac{\partial^{2} Q}{\partial x^{2}}
$$

where $\beta=\frac{\Delta x^{2}}{2 \Delta t}$. Hint: use forward differencing in time and central differencing in space. Hence, explain what problems may arise on using the Lax-Friedrichs method (LF) to solve the conservation law (CL)?

