EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sc.

Boundary Layers

COURSE CODE	$:$ MATHG302
DATE	$:$ 12-MAY-06
TIME	$: 14.30$
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on question 5 and the best three other solutions will count. Question 5 must be attempted.
The use of an electronic calculator is not permitted in this examination.

For questions 2 to 5 , assume two-dimensional incompressible laminar flow.
The standard dimensional boundary layer equations for a boundary layer in the neighbourhood of $y=0$ are

$$
u_{x}+v_{y}=0 \quad, \quad u_{t}+u u_{x}+v u_{y}=U_{t}+U U_{x}+\nu u_{y y}
$$

Here u and v are velocity components in the x and y directions respectively, t is time, ν is the kinematic viscosity of the fluid, and $U(x, t)$ is the external flow in the x direction at $y=0$. Subscripts denote partial derivatives.

The streamfunction ψ is defined such that $u=\psi_{y}$ and $v=-\psi_{x}$.
For length scale L and velocity scale U_{0}, the Reynolds number is $R=U_{0} L / \nu$.

1. A two point boundary value problem for the function $h(x)$ is defined by the differential equation

$$
\epsilon(1+3 x) h_{x x}-h=-C,
$$

where ϵ is a small positive parameter, C is a constant, and the boundary conditions are

$$
h(0)=1 \quad, \quad h(1)=2
$$

What property makes this an example of a singular perturbation problem?
(a) For the case $C=2$, determine the location of a boundary layer and find the first terms of the outer and inner asymptotic expansions.
Provide a sketch of the resulting leading order solution for $h(x)$.
Find the second term of the inner expansion.
(b) For the case $C=1$, again find the location of the boundary layer and the first terms of the inner and outer expansions.
2. What is a basic property of flow represented by a similarity solution?
(a) Consider the standard boundary layer equations for steady flow in the case $U(x)=C x^{m}$, where $C>0$ and m are constants. By choosing a similarity variable $\eta=y /\left(A x^{n}\right)$, where A and n are other constants, and a streamfunction of the form

$$
\psi(x, y)=A C x^{m+n} f(\eta)
$$

show that a similarity solution can be found if $2 n=1-m$. (Note that m and n need not be integers.)
By choosing $A^{2}=\nu /[C(m+n)]$, derive the Falkner-Skan equation

$$
f^{\prime \prime \prime}+f f^{\prime \prime}+m\left(1-f^{\prime 2}\right) /(m+n)=0
$$

When $C=U_{0} / L^{m}$ (i.e. $U(x)=U_{0}(x / L)^{m}$), show that the similarity variable can be written as

$$
\eta=R^{1 / 2}(m+n)^{1 / 2}(y / L)(x / L)^{-n}
$$

(b) The streamfunction for a steady inviscid flow in polar co-ordinates is

$$
\psi=\left(U_{o} L / \lambda\right)(r / L)^{\lambda} \sin [\lambda(\theta-\pi)],
$$

where $\lambda=3 / 2$.
Given that $u^{(r)}=\psi_{\theta} / r$ and $u^{(\theta)}=-\psi_{r}$, find expressions for these velocity components.
Show that the lines $\theta=\pi / 3, \theta=\pi$ and $\theta=5 \pi / 3$ are streamlines.
Sketch the streamlines in the region $\pi / 3 \leq \theta \leq 5 \pi / 3$.
(c) How might the result in (a) be used to analyse the boundary layers for flow past a wedge, for which the inviscid flow is that given in (b)? What would be appropriate values for m and n in this case?
3. Consider steady flow past a flat plate that lies along $y=0$, between $x=-L$ and $x=0$. The flow is symmetric about $y=0$, and upstream of the plate the flow is $(u, v)=\left(U_{0}, 0\right)$ where U_{0} is a positive constant.
(a) In the wake downstream of the plate the standard boundary layer equations can be used. From those equations, prove that the quantity

$$
\int_{0}^{\infty} u\left(U_{0}-u\right) d y
$$

is independent of x.
(b) Far downstream, suppose $u / U_{0}=1-F(x, y)$, where $F \ll 1$. Derive the linearised boundary layer equation

$$
F_{x}=A^{2} F_{y y}
$$

where $A^{2}=\nu / U_{0}$.
(c) By using the substitution $F=f(\eta) / x^{1 / 2}$, where $\eta=y /\left(A x^{1 / 2}\right)$, derive the ordinary differential equation

$$
f^{\prime \prime}+\left(\eta f^{\prime}+f\right) / 2=0
$$

Justify the boundary conditions $f^{\prime}=0$ at $\eta=0$ and $f \rightarrow 0$ as $\eta \rightarrow \infty$.
Find f to within an arbitrary multiplicative constant.
How might the value of that constant be determined?
4. Suppose flow past an obstacle is impulsively started from rest at time $t=0$, such that the inviscid flow at the surface of the obstacle, along $y=0$, is given to be $U(x)$ for $t>0$.

Given that the streamfunction for the flow in the boundary layer has the form

$$
\psi=2(\nu t)^{1 / 2}\left[U F_{0}(\eta)+t U U_{x} F_{1}(\eta)+\text { terms of order } t^{2}\right]
$$

where $\eta=y /(4 \nu t)^{1 / 2}$, find corresponding expressions for u and v.
(a) Derive the ordinary differential equation

$$
F_{0}{ }^{\prime \prime \prime}+2 \eta F_{0}^{\prime \prime}=0
$$

for F_{0}, and also derive three boundary conditions.
(b) Given that

$$
\int_{0}^{\infty} e^{-\lambda^{2}} d \lambda=\sqrt{\pi} / 2
$$

prove that to leading order

$$
u=U(x)(2 / \sqrt{\pi}) \int_{0}^{\eta} e^{-\lambda^{2}} d \lambda
$$

(c) For the case $U(x)=U_{0}\left(1+e^{-x^{2} / L^{2}}\right)$, find the value of x where separation is first expected to occur on the surface of the obstacle. Hence show that separation is first expected at time

$$
t=\left(L / U_{0}\right)(2 e / \pi)^{1 / 2} / F_{1}^{\prime \prime}(0)
$$

(You may assume that $F_{1}^{\prime \prime}(0)$ is positive.)
5. With velocity scaled by U_{0}, distance scaled by L, and pressure scaled by $\rho U_{0}{ }^{2}$, dimensionless cquations for steady flow are

$$
\begin{align*}
& u u_{x}+v u_{y}=-p_{x}+R^{-1}\left(u_{x x}+u_{y y}\right) \tag{1}\\
& u v_{x}+v v_{y}=-p_{y}+R^{-1}\left(v_{x x}+v_{y y}\right) \tag{2}
\end{align*}
$$

with $R^{-1} \ll 1$, and $u_{x}+v_{y}=0$. Consider flow past a flat plate lying along $y=0$, between $x=-1$ and $x=0$, with $(u, v)=(1,0)$ far from the plate.
In the context of matched asymptotic expansions, why is a boundary layer required near the plate?
If the inner variable is $Y=y / \epsilon$, state (without proof, but giving a reason) the choice of ϵ required to obtain the standard boundary layer equations.
(a) For the triple deck theory required near the trailing edge of the plate, appropriate scales for the upper deck are $W=y / \delta^{3}$ and $X=x / \delta^{3}$, with expansions of the form

$$
\begin{aligned}
\psi & \sim y-\delta^{4} C+\delta^{5} F(X, W) \\
p & \sim \delta^{2} P(X, W)
\end{aligned}
$$

wherc $\delta^{4}=R^{-1}$ and C is a constant.
What does the term $-\delta^{4} C$ represent?
With these scalings, rewrite (1) and (2) in terms of F and P.
Deduce that $F_{W X}=-P_{X}$ and $F_{X X}=P_{W}$.
Given $V(X, W)=-F_{X}=f(X) g(W)$, show that

$$
V_{X X}+V_{W W}=f_{X X} g+f g_{W W}=0
$$

(b) The boundary conditions for V are $V \rightarrow 0$ as $X \rightarrow \pm \infty$ and as $W \rightarrow \infty$, and $V \rightarrow-A_{X}$ as $W \rightarrow 0$ for some function $A(X)$. Prove that

$$
V=-(2 \pi)^{-1} \int_{-\infty}^{\infty} A_{\lambda} \frac{2 W}{W^{2}+(X-\lambda)^{2}} d \lambda
$$

You are given that

$$
\int_{-\infty}^{\infty} e^{i k(X-\lambda)} e^{-|k| W} d k=\frac{2 W}{W^{2}+(X-\lambda)^{2}}
$$

and you may use the Fourier transform relations

$$
\hat{f}(k)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} f(X) e^{-i k X} d X \quad, \quad f(X)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k X} d k
$$

(c) Given that $P \rightarrow 0$ as $W \rightarrow \infty$, and that $V_{X}=-P_{W}$, use the above expression for V to find a similar expression for P.

