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All questions may be attempted but only marks obtained on question 5 and the best three
other solutions will count. Question 5 must be attempted.
The use of an electronic calculator is not permitted in this examination.

For questions 2 to 5, assume two-dimensional incompressible laminar flow.

The standard dimensional boundary layer equations for a boundary layer in the neigh-
bourhood of y=0 are

Uy + v, =0, u + uuy, + vuy = Uy + UU; + vuy,

Here u and v are velocity components in the z and y directions respectively, ¢ is time, v
is the kinematic viscosity of the fluid, and U(z,t) is the external flow in the z direction
at y=0. Subscripts denote partial derivatives.

The streamfunction 4 is defined such that u=vy, and v=—1, .
For length scale L and velocity scale Uy, the Reynolds number is R=UyL/v .

1. A two point boundary value problem for the function h(z) is defined by the differ-

ential equation
€(1+3z)hyy — h = —-C

where ¢ is a small positive parameter, C is a constant, and the boundary conditions
are

What property makes this an example of a singular perturbation problem?

(a) For the case C=2, determine the location of a boundary layer and find the first
terms of the outer and inner asymptotic expansions.

Provide a sketch of the resulting leading order solution for h(z).
Find the second term of the inner expansion.

(b) For the case C=1, again find the location of the boundary layer and the first
terms of the inner and outer expansions.
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2. What is a basic property of flow represented by a similarity solution?

(a)

(b)

Consider the standard boundary layer equations for steady flow in the case
U(z) = Ca™ , where C > 0 and m are constants. By choosing a similarity
variable n = y/(Az™), where A and n are other constants, and a streamfunction
of the form

Y(z,y) = ACz™™f(n) ,

show that a similarity solution can be found if 2n = 1 — m. (Note that m and
n need not be integers.)

By choosing A? = v/[C(m + n)), derive the Falkner-Skan equation

"+ "+ m(l— ) /(m+n) =0 .

When C = Uy/L™ (i.e. U(z) = Up(z/L)™ ), show that the similarity variable
can be written as

n = RY?(m+n)"?(y/L)(z/L)™

The streamfunction for a steady inviscid flow in polar co-ordinates is
Y = (U,L/X\)(r/L) sin[A(6 — )] ,

where A=3/2 .

Given that u(M=q), /r and u®=—y).. find expressions for these velocity com-
ponents.

Show that the lines §=n/3, 6=n and 6=57/3 are streamlines.

Sketch the streamlines in the region /3 < 6 < 57/3 .

How might the result in (a) be used to analyse the boundary layers for flow
past a wedge, for which the inviscid flow is that given in (b)? What would be
appropriate values for m and n in this case?
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3. Consider steady flow past a flat plate that lies along y=0, between z=—L and z=0.
The flow is symmetric about y=0, and upstream of the plate the flow is (u, v)=(Uj, 0)
where Uy is a positive constant.

(a) In the wake downstream of the plate the standard boundary layer equations
can be used. From those equations, prove that the quantity

/ u(Up — u) dy
0
is independent of x.

(b) Far downstream, suppose u/Up = 1 — F(z,y) , where FF < 1. Derive the
linearised boundary layer equation

F, = A’ F,

yy

where A?=v/U, .

(c) By using the substitution F=f(n)/z/?, where n=y/(Az'/?), derive the ordi-
nary differential equation

'+ f'+f)/2 =20

Justify the boundary conditions f'=0 at =0 and f — 0 as n — oc.
Find f to within an arbitrary multiplicative constant.
How might the value of that constant be determined?
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4. Suppose flow past an obstacle is impulsively started from rest at time ¢=0, such
that the inviscid flow at the surface of the obstacle, along y=0, is given to be U(z)
for t > 0.

Given that the streamfunction for the flow in the boundary layer has the form
P = 2(wt)2 [UFy(n) + tUU.Fy(n) + terms of order £2]
where 7 = y/(4vt)/? | find corresponding expressions for u and v.
(a) Derive the ordinary differential equation
" + 2nFy" =0
for Fy, and also derive three boundary conditions.
(b) Given that
/Ooo eMd\ = 7/2

prove that to leading order

u = U)(2/v7) /0 " e

(c) For the case U(z) = Up(1 + e ="/L*) | find the value of 2 where separation
is first expected to occur on the surface of the obstacle. Hence show that
separation is first expected at time

t = (L/Uo) (2¢/m)'/* | Fy"(0)

(You may assume that F;”(0) is positive.)
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5. With vclocity scaled by U, distance scaled by L, and pressure scaled by U2,
dimensionless cquations for steady flow are

wuy + vuy, = —pr + R WU +uy) (1)

vy + vUy = —pPy + R~1(Uzz + vyy) ) (2)
with R~! « 1, and u, + v, = 0. Consider flow past a flat plate lying along y=0,
between z=—1 and z=0, with (u,v)=(1,0) far from the plate.

In the context of matched asymptotic expansions, why is a boundary layer required
near the plate?

If the inner variable is Y=y/e, state (without proof, but giving a reason) the choice
of € required to obtain the standard boundary layer equations.

(a) For the triple deck theory required near the trailing edge of the plate, appro-
priate scales for the upper deck are W=y/8 and X=z/6%, with expansions of
the form

v o~ y — §C + BF(X,W) ,
p o~ 52P(X,W) ,

where 6°=R~! and C is a constant.

What does the term —3§*C represent?

With these scalings, rewrite (1) and (2) in terms of F' and P.
Deduce that Fyyx=—Px and Fxx=Pw .

Given V(X,W) = —Fx = f(X)g(W) , show that

Vxx +Vww = fxxg+ fgww = 0

(b) The boundary conditions for V are V. — 0 as X — +oo and as W — oo, and
V — —Ax as W — 0 for some function A(X). Prove that

0 2W
vV = —(2n)! A dA
e [ A ey
You arc given that
Al 2w
k(X =) —[k|W g7, _
/_ooe e oy I

and you may usc the Fourier transform relations
flk) = (27r)‘1/2/ fX)e*¥dx ,  f(X) = (27r)-1/2/ FlR)e* X dk .

(c) Given that P — 0 as W — oo, and that Vx=—Py , use the above expression
for V to find a similar expression for P.
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