EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sci.

Mathematics C353: Theory Of Traffic Flow I

COURSE CODE : MATHC353

UNIT VALUE : 0.50

DATE : 08-MAY-03

TIME : 14.30

TIME ALLOWED
: 2 Hours

All questions may be answered, but only marks obtained on the best four questions will count. The use of an electronic calculator is not permitted in this examination.

1 At a signal-controlled road junction there are m stages in the signal cycle and n streams of traffic. For $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$, the effective green times for stage i and stream j form proportions λ_{i} and Λ_{j} of the cycle respectively, and lost time forms a proportion λ_{0} of the cycle.

Deduce in terms of suitably defined coefficients $a_{i j}(i=0,1,2, \ldots, m ; j=1,2, \ldots, n)$ how the Λ_{j} are related to the λ_{i}.

What is the value of the sum of all the λ_{i} and why is this so?
The total lost time per cycle is L, the cycle time must not exceed c_{0} and the effective green time for stage i must be at least $g_{i M}$, where

$$
c_{0}-L-\sum_{i=1}^{m} g_{i M}=m b \text { and } b>0
$$

Show that λ^{+}with $\lambda_{0}{ }^{+}=L / c_{0}$ and $\lambda_{i}^{+}=\left(g_{i M}+b\right) / c_{0}(i=1,2, \ldots, m)$ are a set of timings that satisfy all these conditions.

In stream j the arrival rate is μq_{j} (where μ is the same for all j) and the saturation flow is s_{j}. Express as a linear inequality in μ and the λ_{i} the requirement that the degree of saturation should not exceed p_{j}.

Hence show that the arrival rates μq_{j} can be accommodated with the timings λ^{+} provided that

$$
\mu \leq \min _{j}\left\{p_{j} s_{j}\left[a_{0 j} L+\sum_{i=1}^{m} a_{i j}\left(g_{i M}+b\right)\right] / q_{j} c_{0}\right\} .
$$

Why is this in general not the largest μ for which signal timings can be found that satisfy all the stated constraints?

You may assume that for any $I \times J$ matrix $\tau=\left(\tau_{i j}\right)$ whose elements are strictly positive and any strictly positive $a_{i}(i=1,2, \ldots, I)$ and $b_{j}(j=1,2, \ldots, j)$, there is one and only one matrix $\mathbf{t}=\left(t_{i j}\right)$ such that $t_{i j}=r_{i} s_{j} \tau_{i j}$ for some r_{i} and s_{j} and all i and j, and the row and column sums are a_{i} and b_{j} respectively.

Show that if $\mathbf{s}=\left(s_{i j}\right)$ corresponds to $\boldsymbol{\sigma}=\left(\sigma_{i j}\right)$ in the same way as \mathbf{t} does to τ with the same a_{i} and b_{j} (but in general different r_{i} and s_{j}), then $\mathbf{s}=\mathbf{t}$ if and only if for some ξ_{i} and $\eta_{j}, \sigma_{i j}=\xi_{i} \eta_{j} \tau_{i j}$ for all i and j.

When $\tau_{i j}=\exp \left(-\alpha c_{i j}\right)$ for given $c_{i j}$ and for all i and j, the corresponding matrix \mathbf{t} is denoted by $\mathrm{t}^{*}(\alpha)$. Show that if, for all i and a certain subset of the $j, c_{i j}$ is increased by the same amount c_{0} but the a_{i} and b_{j} are unchanged, the matrix $\mathbf{t}^{*}(\alpha)$ will be unchanged. (Result (*))

Suppose that the distribution of trips by car in Greater London were represented by the gravity model with exponential cost function. Discuss whether Result (*) would imply that congestion charging should have no effect on the number of journeys made by car to destinations within the charging zone.

3(a) In a stream of traffic controlled by a signal, there is no traffic queueing at time $t=0$, the interval $(0, r)$ is effective red time and all time $t>r$ is effective green. The arrival rate and saturation flow are q and s vehicles/unit time respectively, and the amount of traffic arriving in any interval $(0, t)$ is the random variable Q_{t}. The random variable $z(z \geq r)$ is the time at which the queue that builds up during $(0, r)$ clears, and D_{z} is the delay incurred during $(0, z)$ in units of vehicle-time.

Write D_{z} in terms of integrals with respect to t of the two functions Q_{t} and $(t-r) s$.
Show that the expectation of D_{z} exceeds $q r^{2} s / 2(s-q)$.
3(b) Explain what is meant by a shock wave in traffic, and establish an expression for the speed at which one travels.

The flow of a stream of traffic is interrupted between times $t=0$ and $t=r$ by the effective red period of a traffic signal. At all times, the traffic approaches the signal freely at rate q and speed v, and after time $t=r$ the signal remains green indefinitely. Show that the trajectory of x_{b}, the back of the queue of stationary traffic, initially satisfies $x_{b}=\frac{-q l v t}{(q l-v)}$ where l is the effective length of a queued vehicle.

Using the variable s, the saturation flow, derive an expression for the time at which traffic conditions at the stop-line return to normal.

Explain why the disturbance to the traffic flow caused by the traffic signals extends upstream of position $x_{r}=\frac{-q l v r}{(q l-v)}$.

4 Wardrop's first principle of route choice is that "the journey times on all routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route".

Discuss the main limitations of this principle in modelling road traffic assignment.
Identify the relationship between path costs and path flows that is satisfied by the path flows \mathbf{t}^{*} that solve the optimisation problem:

$$
\underset{t}{\operatorname{Minimise}} \sum_{a \in L_{v=0}}^{v_{a}} c_{a}(v) d v+\frac{1}{\theta} \sum_{o d} \sum_{p \in P_{o d}} t_{p}\left(\log _{e} t_{p}-1\right)
$$

subject to the constraints

$$
\sum_{p \in P_{o d}} t_{p}=T_{o d} \quad \forall o d
$$

where
$v_{a}=\sum_{o d} \sum_{p \in P_{o d}} t_{p} \delta_{p}^{a} \quad \forall a \in L$.
$\delta_{p}^{a}=\left\{\begin{array}{cc}1 & \text { if link } a \text { is on path } p \\ 0 & \text { otherwise, }\end{array}\right.$
$c_{a}(v)$ is the cost of using link a when the flow on that link is v,
θ is a positive parameter,
$L \quad$ is the set of links in the network,
$T_{o d}$ is the demand for travel from o to d per unit time,
$t_{p} \quad$ is the flow on path p,
$P_{o d} \quad$ is a set of reasonable paths from o to d, and
$v_{a} \quad$ is the flow on link a.
Identify ways in which this assignment addresses limitations of Wardrop's first principle.

5 Customers arrive at a queue according to a Poisson process with mean rate q and have exponentially distributed service times with mean Q^{-1}. Show that if $x=q / Q<1$ the equilibrium probability P_{n} that there are n customers in the queue is given by

$$
P_{n}=(1-x) x^{n} \quad(n \geq 0) .
$$

Hence or otherwise show that $\mathrm{E}(N)$, the mean equilibrium number of customers in the queue, is given by

$$
\mathrm{E}(N)=\frac{x}{(1-x)}
$$

and establish an expression for the probability $\mathrm{P}(N>0)$ that the queue is non-empty. Discuss the behaviour of this queueing system as the arrival rate q varies in $[0, Q)$.

