UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C333: Theory Of Numbers I

COURSE CODE	: MATHC333
UNIT VALUE	: 0.50
DATE	: 25-MAY-05
TIME	: 10.00
TIME ALLOWED	: 2 Hours

05–C0926–3–120 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- (a) State and prove the theorem about division with remainder. What is the input, and the output, of the division with remainder algorithm? What is the size of the input?
 - (b) Give the definition of the least common multiple of two natural numbers a and b. Show that it divides every common multiple of a and b.
 - (c) State and prove the fundamental theorem of arithmetic. Determine which of the conditions $a^3|b^2$ and $a^2|b^3$ imply a|b, assuming that a, b are natural numbers.
- 2. (a) Define the inverse of $a \mod m$. Prove that the inverse exists and is unique if (a, m) = 1. What is the inverse of 23 mod 82?
 - (b) State and prove Wilson's theorem.
 - (c) Define Euler's φ function. State and prove the formula for $\varphi(n)$ in terms of the canonical representation of n assuming that φ is multiplicative. Determine $\varphi(2004)$.
- 3. (a) Show that the number of primes in $\{1, 2, ..., n\}$ is at least $\frac{1}{2} \ln n$.
 - (b) Assume p is a prime which is congruent to $3 \mod 4$ and a, b are integers. Show that if p divides $a^2 + b^2$, then p divides a and b.
 - (c) Let Q denote the set of integers that can be written as the sum of two squares. State the characterization theorem for Q. Is $2004 \in Q$?

MATHC333

PLEASE TURN OVER

4. (a) State and prove the Chinese remainder theorem. Find all solutions to the system of congruences

$$x \equiv 5 \mod 12, \ x \equiv 2 \mod 9.$$

- (b) Solve the congruence $x^3 + x + 57 \equiv 0 \mod 125$.
- (c) State and prove the key lemma of the RSA cryptosystem.
- 5. (a) Give the definition of the order of $a \mod m$. Show that the order of $a \mod m$ divides $\phi(m)$ if (a, m) = 1. Is 5 a primitive root mod 23?
 - (b) Define the Legendre symbol $(\frac{a}{p})$. State and prove Euler's criterion. Use it to show that $(\frac{a}{p})(\frac{b}{p}) = (\frac{ab}{p})$ provided p is a prime and a, b are integers.
 - (c) State the law of quadratic reciprocity. How many solutions are there to the congruence $3x^2 \equiv 66 \mod 107$?

MATHC333

1

ŧĘ.