UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

٩

Mathematics C333: Theory Of Numbers I

COURSE CODE	:	MATHC333
UNIT VALUE	:	0.50
DATE	:	15-MAY-02
TIME	:	10.00
TIME ALLOWED	:	2 hours

02-C0913-3-90

© 2002 University of London

-

TURN OVER

.

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) State and prove the theorem about division with remainder.
 - (b) Assume a, b are positive integers with a > b. Show that when dividing a by b the remainder is less than a/2.
 - (c) Find two integers x and y such that 3273x + 527y = 1.
 - (d) Give the definition of the least common multiple of two natural numbers a, b. Show that the least common multiple divides every common multiple.
- 2. (a) State and prove the fundamental theorem of arithmetic.
 - (b) Assume a, b, c are positive integers with ab = 171 and bc = 495. What are the possible values of abc?
 - (c) Show that the number of primes in $\{1, 2, ..., n\}$ is at least $\frac{1}{2} \ln n$.
 - (d) Define the Legendre symbol $\left(\frac{a}{p}\right)$. Determine whether the congruence

$$x^2 + 2x \equiv 12 \mod 101$$

has a solution or not.

- 3. (a) Define the inverse of $a \mod m$. Show that the inverse exists and is unique if (a, m) = 1. What is the inverse of the inverse of $a \mod m$?
 - (b) Assume p is a prime which is congruent to $3 \mod 4$ and a, b are integers. Show that if p divides $a^2 + b^2$, then p divides both a and b.
 - (c) Let Q denote the set of integers that can be written as sum of two squares. State the characterization theorem for Q. Is $999 \in Q$?
 - (d) Use the strong prime test base 2 to show that 341 is not a prime.

PLEASE TURN OVER

MATHC333

- 4. (a) State and prove the Chinese remainder theorem.
 - (b) Find all solutions to the system of congruences

$$x \equiv 3 \mod 10, \ x \equiv 5 \mod 14.$$

- (c) Define Euler's φ function. State and prove the formula for $\varphi(n)$ when $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ is the canonical representation of n assuming that φ is multiplicative.
- (d) Show that $n^7 n$ is divisible by 42 for every integer n.
- 5. (a) Let f(x) be a polynomial with integral coefficients. Assume p is a prime. Define the degree, d, of the congruence $f(x) \equiv 0 \mod p$. Show that the congruence has at most d solutions mod p.
 - (b) Assume a, b, m are natural numbers with (a, m) = 1 and (b, m) = 1. Assume the order of $a \mod m$ is h and the order of $b \mod m$ is k, and (h, k) = 1. Show that the order of $ab \mod m$ is hk.
 - (c) Assume p is a prime and (a, p) = 1. State the theorem on the number of solutions to the congruence $x^n \equiv a \mod p$.
 - (d) How many primitive roots are there mod 37? Is 5 a primitive root mod 23?

MATHC333

END OF PAPER

4