University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M323: Semisimple Algebras and Group Representations

COURSE CODE : MATHM323

UNIT VALUE : $\mathbf{0 . 5 0}$

DATE : 27-APR-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let A be an $n \times n$ matrix over a field \mathbb{F}. Define the trace $\operatorname{Tr}(A)$ of A and show that if B is also an $n \times n$ matrix over \mathbb{F} then $\operatorname{Tr}(B A)=\operatorname{Tr}(A B)$.

If G is a finite group explain what is meant by
(i) a representation of G over \mathbb{F}, and
(ii) the character χ_{ρ} of a representation ρ of G.

If ρ, σ are n-dimensional representations of G such that $\chi_{\rho} \neq \chi_{\sigma}$ prove that ρ is not conjugate to σ.
Hence show that the representations ρ, σ of the cyclic group $C_{4}=\left\langle x \mid x^{4}=1\right\rangle$ given below are not conjugate provided $1+1 \neq 0$ in \mathbb{F};

$$
\rho(x)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \quad ; \quad \sigma(x)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. State Schur's Lemma.

Let G be a finite group and let \mathbb{F} be a field in which $|G|$ is invertible. If M is a finitely generated module over $\mathbb{F}[G]$ and $N \subset M$ is a submodule, prove that $M \cong N \oplus(M / N)$.
Explain briefly the main steps in showing that $\mathbb{F}[G]$ is a direct product

$$
\mathbb{F}[G] \cong M_{d_{1}}\left(D_{1}\right) \times \ldots \times M_{d_{m}}\left(D_{m}\right)
$$

where D_{1}, \ldots, D_{m} are finite dimensional division algebras over \mathbb{F}.
In the case where $\mathbb{F}=\mathbb{C}$, state, without proof, an interpretation of m in terms of G, and find m and d_{1}, \ldots, d_{m} when G is the nonabelian group of order 21 defined by the presentation

$$
G(21)=\left\langle x, y \mid x^{7}=y^{3}=1, y x=x^{2} y\right\rangle
$$

3. Let $\rho_{1}, \ldots, \rho_{m}$ be the distinct simple representations of the finite group G over \mathbb{C} where $\rho_{i}: G \rightarrow G L_{d_{i}}(\mathbb{C})$ and let ϵ_{i} be the central idempotent of $\mathbb{C}[G]$ associated with ρ_{i}. State and prove a formula which expresses ϵ_{i} in terms of the character χ_{i} of ρ_{i}.
Hence show that $\sum_{g \in G} \chi_{i}\left(g^{-1}\right) \chi_{j}(g)=|G| \delta_{i j}$.
Find the central idempotent ϵ_{i} explicitly when G is the alternating group A_{4} of order 12

$$
G=A_{4}=\left\langle s, t, x \mid s^{2}=t^{2}=(s t)^{2}=1, x s x^{-1}=t, x t x^{-1}=s t\right\rangle
$$

and $\rho_{i}: A_{4} \rightarrow G L_{3}(\mathbb{C})$ is the simple representation defined on generators by

$$
\rho_{i}(s)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) ; \rho_{i}(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) ; \rho_{i}(x)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

4. If \mathcal{A}, \mathcal{B} are algebras over a field \mathbb{F} describe briefly how the tensor product $\mathcal{A} \otimes \mathcal{B}$ may also be regarded as an algebra.

Explain how a group ring of the form $\mathbb{F}[G \times H]$ may be described as a tensor product algebra.

Describe briefly a calculation which shows that $M_{m}(\mathbb{F}) \otimes M_{n}(\mathbb{F}) \cong M_{m n}(\mathbb{F})$. (You may assume without proof the standard rules for manipulating the tensor symbol \otimes.)
A certain group Γ of order 20 has the Wedderburn decomposition

$$
\mathbb{C}[\Gamma] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathrm{M}_{4}(\mathbb{C})
$$

Describe the Wedderburn decomposition of $\Gamma \times \Gamma$; hence find
(i) the number of distinct simple 4-dimensional representations of $\Gamma \times \Gamma$;
(ii) the largest dimension of any simple representation of $\Gamma \times \Gamma \times \Gamma$.
5. A finite group G is expressed in the form $G=K Q$ where K, Q are subgroups of G such that $K \triangleleft G$ and $K \cap Q=\{1\}$, and denote by $\varphi: Q \rightarrow \operatorname{Aut}(K)$ the homomorphism $\varphi(q)(k)=q k q^{-1}$ for $q \in Q$ and $k \in K$. If $\rho: K \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ is a representation explain how to construct the induced representation

$$
\operatorname{Ind}_{K}^{G}(\rho): G \longrightarrow \mathrm{GL}_{n|Q|}(\mathbb{C})
$$

Let $\quad G=\left\langle x, y \mid x^{9}=y^{2}=1, y x=x^{-1} y\right\rangle \quad$ be the dihedral group of order 18 ; taking $K=\langle x\rangle$ to be the normal subgroup generated by x and $Q=\langle y\rangle$ to be the subgroup generated by y, let $\rho: K \rightarrow \mathrm{GL}_{1}(\mathbb{C})$ be the representation given by

$$
\rho(x)=\omega^{2} ; \quad\left(\omega=\exp \left(\frac{2 \pi i}{3}\right)\right)
$$

Calculate the explicit form of the matrices representing x and y in the induced representation $\operatorname{Ind}_{K}^{G}(\rho)$.
Hence show that $\operatorname{Ind}_{K}^{G}(\rho)$ is simple.

