UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٠

ð

Mathematics M323: Semisimple Algebras and Group Representations

COURSE CODE:MATHM323UNIT VALUE:0.50DATE:27-APR-06TIME:14.30TIME ALLOWED:2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. Let A be an $n \times n$ matrix over a field \mathbb{F} . Define the trace Tr(A) of A and show that if B is also an $n \times n$ matrix over \mathbb{F} then Tr(BA) = Tr(AB).

If G is a finite group explain what is meant by

(i) a representation of G over \mathbb{F} , and

(ii) the character χ_{ρ} of a representation ρ of G.

If ρ , σ are *n*-dimensional representations of G such that $\chi_{\rho} \neq \chi_{\sigma}$ prove that ρ is not conjugate to σ .

Hence show that the representations ρ , σ of the cyclic group $C_4 = \langle x \mid x^4 = 1 \rangle$ given below are not conjugate provided $1 + 1 \neq 0$ in \mathbb{F} ;

$$\rho(x) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} ; \quad \sigma(x) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

2. State Schur's Lemma.

Let G be a finite group and let \mathbb{F} be a field in which |G| is invertible. If M is a finitely generated module over $\mathbb{F}[G]$ and $N \subset M$ is a submodule, prove that $M \cong N \oplus (M/N)$.

Explain briefly the main steps in showing that $\mathbb{F}[G]$ is a direct product

$$\mathbb{F}[G] \cong M_{d_1}(D_1) \times \ldots \times M_{d_m}(D_m)$$

where D_1, \ldots, D_m are finite dimensional division algebras over \mathbb{F} .

In the case where $\mathbb{F} = \mathbb{C}$, state, without proof, an interpretation of m in terms of G, and find m and d_1, \ldots, d_m when G is the nonabelian group of order 21 defined by the presentation

$$G(21) = \langle x, y \mid x^7 = y^3 = 1, \ yx = x^2y \rangle.$$

PLEASE TURN OVER

MATHM323

3. Let ρ_1, \ldots, ρ_m be the distinct simple representations of the finite group G over \mathbb{C} where $\rho_i : G \to GL_{d_i}(\mathbb{C})$ and let ϵ_i be the central idempotent of $\mathbb{C}[G]$ associated with ρ_i . State and prove a formula which expresses ϵ_i in terms of the character χ_i of ρ_i .

Hence show that $\sum_{g \in G} \chi_i(g^{-1})\chi_j(g) = |G| \delta_{ij}$.

Find the central idempotent ϵ_i explicitly when G is the alternating group A_4 of order 12

$$G = A_4 = \langle s, t, x \mid s^2 = t^2 = (st)^2 = 1, xsx^{-1} = t, xtx^{-1} = st \rangle$$

and $\rho_i: A_4 \to GL_3(\mathbb{C})$ is the simple representation defined on generators by

$$\rho_i(s) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} ; \ \rho_i(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} ; \ \rho_i(x) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

4. If \mathcal{A} , \mathcal{B} are algebras over a field \mathbb{F} describe briefly how the tensor product $\mathcal{A} \otimes \mathcal{B}$ may also be regarded as an algebra.

Explain how a group ring of the form $\mathbb{F}[G \times H]$ may be described as a tensor product algebra.

Describe briefly a calculation which shows that $M_m(\mathbb{F}) \otimes M_n(\mathbb{F}) \cong M_{mn}(\mathbb{F})$. (You may assume without proof the standard rules for manipulating the tensor symbol \otimes .)

A certain group Γ of order 20 has the Wedderburn decomposition

 $\mathbb{C}[\Gamma] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times M_4(\mathbb{C}).$

Describe the Wedderburn decomposition of $\Gamma \times \Gamma$; hence find

- (i) the number of distinct simple 4-dimensional representations of $\Gamma \times \Gamma$;
- (ii) the largest dimension of any simple representation of $\Gamma \times \Gamma \times \Gamma$.

MATHM323

CONTINUED

5. A finite group G is expressed in the form G = KQ where K, Q are subgroups of G such that $K \triangleleft G$ and $K \cap Q = \{1\}$, and denote by $\varphi : Q \to \operatorname{Aut}(K)$ the homomorphism $\varphi(q)(k) = qkq^{-1}$ for $q \in Q$ and $k \in K$. If $\rho : K \to \operatorname{GL}_n(\mathbb{C})$ is a representation explain how to construct the induced representation

$$\operatorname{Ind}_{K}^{G}(\rho): G \longrightarrow \operatorname{GL}_{n|Q|}(\mathbb{C}).$$

Let $G = \langle x, y | x^9 = y^2 = 1, yx = x^{-1}y \rangle$ be the dihedral group of order 18; taking $K = \langle x \rangle$ to be the normal subgroup generated by x and $Q = \langle y \rangle$ to be the subgroup generated by y, let $\rho: K \to \operatorname{GL}_1(\mathbb{C})$ be the representation given by

$$ho(x) = \omega^2$$
 ; ($\omega = \exp(rac{2\pi i}{3})$)

Calculate the explicit form of the matrices representing x and y in the induced representation $\operatorname{Ind}_{\mathcal{K}}^{G}(\rho)$.

Hence show that $\operatorname{Ind}_{K}^{G}(\rho)$ is simple.

MATHM323

END OF PAPER