EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M323: Semisimple Algebras and Group Representations

COURSE CODE : MATHM323

UNIT VALUE : 0.50

DATE : 12-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let R be a ring, and let M be a right R-module. Explain what is meant by saying that M is simple.

State and prove Schur's Lemma.
Let $\varphi: M_{1} \oplus \ldots \oplus M_{m} \rightarrow N$ be a surjective R-homomorphism where $M_{1}, \ldots M_{m}$ are simple nonzero R-modules and N is nonzero ; prove there exists a subset $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, m\}$ such that $\varphi: M_{i_{1}} \oplus \ldots \oplus M_{i_{k}} \rightarrow N$ is an isomorphism.
State and prove a theorem which describes the structure of finitely generated modules over $M_{n}(D)$ where D is a division ring.
2. Let G be a finite group and let \mathbb{F} be a field in which $|G|$ is invertible. If M is a finitely generated module over $\mathbb{F}[G]$ and $N \subset M$ is a submodule, prove that $M \cong N \oplus(M / N)$.
Explain briefly the main steps in showing that $\mathbb{F}[G]$ is a direct product

$$
\mathbb{F}[G] \cong M_{d_{1}}\left(D_{1}\right) \times \ldots \times M_{d_{m}}\left(D_{m}\right)
$$

where D_{1}, \ldots, D_{m} are finite dimensional division algebras over \mathbb{F}.
In the case where $\mathbb{F}=\mathbb{C}$, state, without proof, an interpretation of m in terms of G, and find m and d_{1}, \ldots, d_{m} when $G=A_{4}$, the group of even permutations of the set $\{1,2,3,4\}$.
3. Define the trace, $\operatorname{Tr}(A)$, of an $n \times n$ matrix A, and show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$. Define the character χ_{ρ} of a representation $\rho: G \rightarrow G L_{d}(\mathbb{C})$ of a finite group G, Explain what is meant by saying that a representation $\sigma: G \rightarrow G L_{d}(\mathbb{C})$ is equivalent to ρ, and show that, in this case, $\chi_{\sigma}=\chi_{\rho}$.
Let Q_{8} denote the quaternion group $Q_{8}=\left\langle x, y \mid x^{2}=y^{2}, y x y^{-1}=x^{3}\right\rangle$.
Describe, up to equivalence, all simple representations of Q_{8} over \mathbb{C}, and, by writing down the character table of Q_{8}, explain why your description is complete.
4. Let G be a finite group, let $\rho: G \rightarrow G L_{d}(\mathbb{C})$ be a simple representation with character χ_{ρ}, and let ϵ_{ρ} be the central idempotent of $\mathbb{C}[G]$ associated with ρ. State and prove a formula which expresses ϵ_{ρ} in terms of χ_{ρ}.
Let $\chi_{1}, \ldots, \chi_{m}$ be the distinct simple characters of G over \mathbb{C}. State the First and Second Orthogonality relations for $\chi_{1}, \ldots, \chi_{m}$.
Show, furthermore, how the first relation follows from the idempotent formula, and explain briefly how the second relation follows from the first.
Find ϵ_{ρ} explicitly when G is the binary dihedral group

$$
G=D_{6}^{*}=\left\langle x, y \mid x^{3}=y^{4}=1, y x y^{-1}=x^{2}\right\rangle
$$

and $\rho: D_{6}^{*} \rightarrow G L_{2}(\mathbb{C})$ is the representation

$$
\rho(x)=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right) \quad ; \quad \rho(y)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

5. Let H be a subgroup of the finite group G, and let \mathbb{F} denote a field. Describe the 'extension of scalars' construction $\mathcal{E}_{H}^{G}:\{\mathbb{F}[H]$-modules $\} \rightarrow\{\mathbb{F}[G]$-modules $\}$, and explain briefly its relation to the classical construction of the representation $\operatorname{Ind}_{H}^{G}(\rho)$ of G induced from a representation $\rho: H \rightarrow G L_{k}(\mathbb{F})$.
Let G be the dihedral group of order 8 :

$$
G=\left\langle x, y \mid x^{4}=y^{2}=1, y x=x^{3} y\right\rangle
$$

and let K be the subgroup $K=\langle x\rangle$ generated by x. If ρ_{K} is the representation

$$
\rho_{K}: K \rightarrow G L_{1}(\mathbb{C}) ; \rho_{K}(x)=\sqrt{-1}
$$

show that $\operatorname{Ind}_{K}^{G}\left(\rho_{K}\right)$ is the unique irreducible two-dimensional complex representation of G.

