UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

l,

\$7

Mathematics M323: Semisimple Algebras and Group Representations

COURSE CODE	:	MATHM323
UNIT VALUE	:	0.50
DATE	:	12-MAY-04
TIME	:	14.30
TIME ALLOWED	:	2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Let R be a ring, and let M be a right R-module. Explain what is meant by saying that M is simple.

State and prove Schur's Lemma.

)

4

Let $\varphi: M_1 \oplus \ldots \oplus M_m \to N$ be a surjective *R*-homomorphism where M_1, \ldots, M_m are simple nonzero *R*-modules and *N* is nonzero ; prove there exists a subset $\{i_1, \ldots, i_k\} \subset \{1, \ldots, m\}$ such that $\varphi: M_{i_1} \oplus \ldots \oplus M_{i_k} \to N$ is an isomorphism.

State and prove a theorem which describes the structure of finitely generated modules over $M_n(D)$ where D is a division ring.

2. Let G be a finite group and let \mathbb{F} be a field in which |G| is invertible. If M is a finitely generated module over $\mathbb{F}[G]$ and $N \subset M$ is a submodule, prove that $M \cong N \oplus (M/N)$.

Explain briefly the main steps in showing that $\mathbb{F}[G]$ is a direct product

$$\mathbb{F}[G] \cong M_{d_1}(D_1) \times \ldots \times M_{d_m}(D_m)$$

where D_1, \ldots, D_m are finite dimensional division algebras over \mathbb{F} .

In the case where $\mathbb{F} = \mathbb{C}$, state, without proof, an interpretation of m in terms of G, and find m and d_1, \ldots, d_m when $G = A_4$, the group of even permutations of the set $\{1, 2, 3, 4\}$.

3. Define the trace, Tr(A), of an n × n matrix A, and show that Tr(AB) = Tr(BA). Define the character χ_ρ of a representation ρ : G → GL_d(C) of a finite group G, Explain what is meant by saying that a representation σ : G → GL_d(C) is equivalent to ρ, and show that, in this case, χ_σ = χ_ρ. Let Q₈ denote the quaternion group Q₈ = ⟨x, y | x² = y², yxy⁻¹ = x³⟩.

Describe, up to equivalence, all simple representations of Q_8 over \mathbb{C} , and, by writing down the character table of Q_8 , explain why your description is complete.

MATHM323

PLEASE TURN OVER

4. Let G be a finite group, let $\rho : G \to GL_d(\mathbb{C})$ be a simple representation with character χ_{ρ} , and let ϵ_{ρ} be the central idempotent of $\mathbb{C}[G]$ associated with ρ . State and prove a formula which expresses ϵ_{ρ} in terms of χ_{ρ} .

Let χ_1, \ldots, χ_m be the distinct simple characters of G over C. State the First and Second Orthogonality relations for χ_1, \ldots, χ_m .

Show, furthermore, how the first relation follows from the idempotent formula, and explain briefly how the second relation follows from the first.

Find ϵ_{ρ} explicitly when G is the binary dihedral group

$$G = D_6^* = \langle x, y \mid x^3 = y^4 = 1, yxy^{-1} = x^2 \rangle$$

and $\rho: D_6^* \to GL_2(\mathbb{C})$ is the representation

$$ho(x) = \left(egin{array}{cc} 0 & -1 \ & \ 1 & -1 \end{array}
ight) \;\;;\;\;
ho(y) = \left(egin{array}{cc} 0 & 1 \ & \ 1 & 0 \end{array}
ight).$$

5. Let H be a subgroup of the finite group G, and let \mathbb{F} denote a field. Describe the 'extension of scalars' construction $\mathcal{E}_{H}^{G} : {\mathbb{F}}[H] - \text{modules}} \to {\mathbb{F}}[G] - \text{modules}}$, and explain briefly its relation to the classical construction of the representation $\text{Ind}_{H}^{G}(\rho)$ of G induced from a representation $\rho : H \to GL_{k}(\mathbb{F})$.

Let G be the dihedral group of order 8 :

$$G = \langle x, y | x^4 = y^2 = 1, yx = x^3 y \rangle,$$

and let K be the subgroup $K = \langle x \rangle$ generated by x. If ρ_K is the representation

$$\rho_K: K \to GL_1(\mathbb{C}) ; \ \rho_K(x) = \sqrt{-1}$$

show that $\operatorname{Ind}_{K}^{G}(\rho_{K})$ is the unique irreducible two-dimensional complex representation of G.

MATHM323

ł

END OF PAPER