UNIVERSITY COLLEGE LONDON

1

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sci.

Ľ,

Mathematics 3205: Riemann Surfaces and Algebraic Curves

COURSE CODE	: MATH3205
UNIT VALUE	: 0.50
DATE	: 06MAY-05
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

05-C0904-3-30 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Let C be the algebraic curve in \mathbb{P}^2 defined by the polynomial

$$F(X, Y, Z) = X^{3} + Y^{3} - 2X^{2}Z + Y^{2}Z + XZ^{2}$$

- (a) Find the singular points of C, the multiplicities of C at these points and the equations of the tangent lines at these points.
- (b) Let L_1 be the line in \mathbb{P}^2 defined by X = 0, let L_2 be the line Y = 0 and let D be the curve $2X^2 Y^2 XZ = 0$. Let P be the point [0:0:1]. Compute $I_P(C, L_1)$, $I_P(C, L_2)$ and $I_P(C, D)$.
- 2. (a) Let X be a pathwise connected, locally simply connected topological space. Let x_0 be a point of X. Say what is meant by
 - (i) the fundamental group $\pi_1(X, x_0)$
 - (ii) a covering space of X
 - (iii) a covering transformation and a Galois covering
 - (iv) the universal covering space of X.
 - (b) Let T be a torus and P a point of T. Determine the fundamental group of the space obtained by removing the point P from T. (Justification not required)
 - (c) Let X be the wedge of 2 circles. Recall that the fundamental group of X is the free group $\langle a, b \rangle$ on two generators a and b. Describe the covering spaces of X corresponding to the following subgroups:
 - (i) $< a^3, b^3, ab, ba >$
 - (ii) $< a^2, b^2, aba^{-1}, bab^{-1} >$

MATH 3205

PLEASE TURN OVER

3. (a) Let X be a compact Riemann surface of genus g_X . Explain what is meant by the Euler-Poincaré characteristic $\chi(X)$ and give the expression for $\chi(X)$ in terms of g_X .

Let Y be a compact Riemann surfaces of genus g_Y and let $\pi: X \longrightarrow Y$ be a holomorphic map. If y is a point of X, explain what is meant by

- (i) the ramification index of π at x and by saying that π is ramified at x.
- (ii) the degree of π .

State the Riemann-Hurwitz formula.

- (b) Suppose that $\pi: X \longrightarrow Y$ has degree two. Show that the number of ramification points is even.
- (c) If, in addition Y = P¹ and n denotes the number of ramification points, express g_X in terms of m = ⁿ/₂.
 For each m ≥ 1, give an example of a double covering π: X → P¹ ramified at 2m points.
- 4. (a) Let C and D be two curves in \mathbb{P}^2 of degrees n and m respectively. State the Bezout's theorem for C and D.
 - (b) Let C be a projective curve of degree d and suppose that C has m singular points lying on a line L.
 - (i) Show that if 2m > d, then L is contained in C.
 - (ii) Show that if C is irreducible, then $2m \leq d$.
 - (c) Let C_n be the algebraic curve in \mathbb{P}^2 given by the equation $X^n + Y^n + Z^n = 0$ where $n \ge 3$. Let $f: [x : y : z] \mapsto [x : z]$ be a holomorphic map $C_n \longrightarrow \mathbb{P}^1$. Determine the ramification points of f and their indices. Find the genus of C_n .
- 5. (a) Let X be a compact Riemann surface of genus g and D a divisor on X.
 - (i) Define the vector space $\mathcal{L}(D)$.
 - (ii) Let l(D) be the dimension of $\mathcal{L}(D)$. Show that if deg D < 0 then l(D) = 0.
 - (iii) Show that if D and D' are linearly equivalent, then the vector spaces $\mathcal{L}(D)$ and $\mathcal{L}(D')$ are isomorphic.
 - (iv) Explain what is meant by a canonical divisor and prove that all canonical divisors are linearly equivalent.
 - (v) State the Riemann-Roch theorem for X.
 - (b) Let X be a compact Riemann surface of genus g and P a point of X. Show that there exists a meromorphic function on X having P as a unique pole.
 - (c) Let P_1, \ldots, P_r be r points on a compact Riemann surface X of genus g. Show that there exists a meromorphic function having poles at P_1, \ldots, P_r and holomorphic elsewhere.

MATH 3205

END OF PAPER